×

Space and chaos-expansion Galerkin proper orthogonal decomposition low-order discretization of partial differential equations for uncertainty quantification. (English) Zbl 07772232

Summary: The quantification of multivariate uncertainties in partial differential equations can easily exceed any computing capacity unless proper measures are taken to reduce the complexity of the model. In this work, we propose a multidimensional Galerkin proper orthogonal decomposition that optimally reduces each dimension of a tensorized product space. We provide the analytical framework and results that define and quantify the low-dimensional approximation. We illustrate its application for uncertainty modeling with polynomial chaos expansions and show its efficiency in a numerical example.
{© 2023 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.}

MSC:

65-XX Numerical analysis

References:

[1] SoizeC. Brief Overview of Stochastic Solvers for the Propagation of Uncertainties. Springer; 2017:133‐139.
[2] CliffeKA, GilesMB, ScheichlR, TeckentrupAL. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput Vis Sci. 2011;14(1):3‐15. doi:10.1007/s00791‐011‐0160‐x · Zbl 1241.65012
[3] Haji‐AliAL, NobileF, TamelliniL, TemponeR. Multi‐index stochastic collocation for random PDEs. Comput. Methods Appl. Mech. Eng.2016;306:95‐122. doi:10.1016/j.cma.2016.03.029 · Zbl 1436.65196
[4] GhanemRG, SpanosPD. Stochastic Finite Elements: A Spectral Approach. Springer; 1991. · Zbl 0722.73080
[5] BabuskaI, TemponeR, ZourarisGE. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal.2004;42(2):800‐825. doi:10.1137/S0036142902418680 · Zbl 1080.65003
[6] MatthiesHG, KeeseA. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng. 2005;194(12):1295‐1331. doi:10.1016/j.cma.2004.05.027 · Zbl 1088.65002
[7] SoizeC, GhanemRG. Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput.2004;26(2):395‐410. doi:10.1137/S1064827503424505 · Zbl 1075.60084
[8] GhanemR, Red‐HorseJ. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Phys D: Nonlinear Phenom. 1999;133(1):137‐144. doi:10.1016/S0167‐2789(99)00102‐5 · Zbl 1194.74400
[9] GarckeJ. Sparse grids in a nutshell. In: GarckeJ (ed.), GriebelM (ed.), eds. Sparse Grids and Applications. Springer; 2013:57‐80.
[10] NouyA. Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Eng.2010;17(4):403‐434. doi:10.1007/s11831‐010‐9054‐1 · Zbl 1269.76079
[11] TamelliniL, MaîtreOL, NouyA. Model reduction based on proper generalized decomposition for the stochastic steady incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 2014;36(3):A1089‐A1117. doi:10.1137/120878999 · Zbl 1302.76149
[12] ArnstM, GhanemR, PhippsE, Red‐HorseJ. Reduced chaos expansions with random coefficients in reduced‐dimensional stochastic modeling of coupled problems. Int. J. Numer. Methods Eng.2014;97(5):352‐376. doi:10.1002/nme.4595 · Zbl 1352.65006
[13] AudouzeC, NairPB. Galerkin reduced‐order modeling scheme for time‐dependent randomly parametrized linear partial differential equations. Int. J. Numer. Methods Eng.2012;92(4):370‐398. doi:10.1002/nme.4341 · Zbl 1352.65384
[14] BianchiniI, ArgientoR, AuricchioF, LanzaroneE. Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components. Comput. Mech.2015;56(3):533‐549. doi:10.1007/s00466‐015‐1185‐7 · Zbl 1326.65158
[15] BallaniJ, GrasedyckL. Hierarchical tensor approximation of output quantities of parameter‐dependent PDEs. SIAM/ASA J. Uncertain. Quantif.2015;3(1):852‐872. doi:10.1137/140960980 · Zbl 1327.65010
[16] BennerP, OnwuntaA, StollM. Low‐rank solution of unsteady diffusion equations with stochastic coefficients. SIAM/ASA J. Uncertain. Quantif.2015;3(1):622‐649. doi:10.1137/130937251 · Zbl 1325.65016
[17] KhoromskijBN. Tensor numerical methods for multidimensional PDEs: theoretical analysis and initial applications. ESAIM: Proc. 2015;48:1‐28. doi:10.1051/proc/201448001 · Zbl 1382.65461
[18] UllmannE. A Kronecker product preconditioner for stochastic Galerkin finite element discretizations. SIAM J. Sci. Comput.2010;32(2):923‐946. doi:10.1137/080742853 · Zbl 1210.35306
[19] BaumannM, BennerP, HeilandJ. Space‐time Galerkin POD with application in optimal control of semi‐linear parabolic partial differential equations. SIAM J. Sci. Comput.2018;40(3):A1611‐A1641. doi:10.1137/17M1135281 · Zbl 1392.35323
[20] GarreisS, UlbrichM. Constrained optimization with low‐rank tensors and applications to parametric problems with PDEs. SIAM J. Sci. Comput.2017;39(1):A25‐A54. doi:10.1137/16M1057607 · Zbl 1381.49027
[21] KhoromskijBN, SchwabC. Tensor‐structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput.2011;33(1):364‐385. doi:10.1137/100785715 · Zbl 1243.65009
[22] RowleyCW. Model reduction for fluids, using balanced proper orthogonal decomposition. Internat. J. Bifur. Chaos Appl. Sci Eng.2005;15(3):997‐1013. doi:10.1142/s0218127405012429 · Zbl 1140.76443
[23] BaumannM, HeilandJ, SchmidtM. Discrete input/output maps and their relation to proper orthogonal decomposition. In: BennerP (ed.), BollhöferM (ed.), KressnerD (ed.), MehlC (ed.), StykelT (ed.), eds. Numerical Algebra, Matrix Theory, Differential‐Algebraic Equations and Control Theory. Springer International Publishing; 2015:585‐608. · Zbl 1327.65119
[24] De LathauwerL, De MoorB, VandewalleJ. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl.2000;21(4):1253‐1278. doi:10.1137/S0895479896305696 · Zbl 0962.15005
[25] FernandesAD, AtchleyWR. Gaussian quadrature formulae for arbitrary positive measures. Evol Bioinform Online. 2007;2:251‐259.
[26] WilfHS. Mathematics for the Physical Sciences. Dover Books Adv. Math. Dover Publications; 1978. · Zbl 0394.00001
[27] ChenP, QuarteroniA, RozzaG. A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal.2013;51(6):3163‐3185. doi:10.1137/130905253 · Zbl 1288.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.