×

Caputo-Wirtinger integral inequality and its application to stability analysis of fractional-order systems with mixed time-varying delays. (English) Zbl 07748312

Summary: Various techniques of integral inequality are widely used to establish the delay-dependent conditions for the dynamics of differential systems so that the conservatism of conditions can be reduced. In the integer-order systems, the integral term of \(\int_\tau^\omega \dot{p}^T(s) S \dot{p}(s) ds\) often appears in the derivative of Lyapunov -Krasovskii functional, and how to scale down this term to obtain less conservative condition is a key problem. Similarly, the integral term of \(\int_\tau^\omega ({}_0^C \text{D}_s^\alpha p(s))^T S_0^C \text{D}_s^\alpha p(s) ds\) with fractional derivative may also be encountered in the analysis of dynamical behaviors for fractional-order systems. In view of this, the paper intends to construct several novel fractional Wirtinger integral inequalities under the sense of Caputo derivative, and to investigate the stability of fractional-order systems with mixed time-varying delays based on the constructed Caputo-Wirtinger integral inequalities. Meanwhile, in order to analyze the stability for our concerned models by the new inequalities, two new theorems of generalized fractional-order Lyapunov direct method are given. Finally, a numerical example is designed to validate the correctness and practicability of the obtained results.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
35R11 Fractional partial differential equations
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam, The Netherlands, 204 · Zbl 1092.45003
[2] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[3] Zeng, S. D.; Baleanu, D.; Bai, Y. R.; Wu, G. C., Fractional differential equations of Caputo−Katugampola type and numerical solutions, Appl. Math. Comput., 315, 549-554 (2017) · Zbl 1426.65097
[4] Gu, K. Q.; Kharitonov, V. L.; Chen, J., Stability of Time-Delay Systems (2003), Birkhäuser: Birkhäuser Boston · Zbl 1039.34067
[5] He, X.; Wang, Z. D.; Zhou, D. H., Robust fault detection for networked systems with communication delay and data missing, Automatica, 45, 11, 2634-2639 (2009) · Zbl 1180.93101
[6] Deng, W. H.; Li, C. P.; Lü, J. H., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48, 409-416 (2007) · Zbl 1185.34115
[7] Wang, H.; Yu, Y. G.; Wen, G. G.; Zhang, S.; Yu, J. Z., Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing, 154, 15-23 (2015)
[8] Li, Y.; Chen, Y. Q.; Podlubny, I., Mittag−Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 8, 1965-1969 (2009) · Zbl 1185.93062
[9] Wang, W.; Zeng, H. B.; Teo, K. L.; Chen, Y. J., Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices, J. Franklin Inst., 360, 9, 6099-6109 (2023) · Zbl 1516.93200
[10] Zeng, H. B.; Lin, H. C.; He, Y.; Teo, K. L.; Wang, W., Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality, J. Franklin Inst., 357, 14, 9930-9941 (2020) · Zbl 1448.93257
[11] Peng, T. S.; Zeng, H. B.; Wang, W.; Zhang, X. M.; Liu, X. G., General and less conservative criteria on stability and stabilization of T−S fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 31, 5, 1531-1541 (2023)
[12] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49, 9, 2860-2866 (2013) · Zbl 1364.93740
[13] Zeng, H. B.; He, Y.; Wu, M.; She, J. H., New results on stability analysis for systems with discrete distributed delay, Automatica, 60, 189-192 (2015) · Zbl 1331.93166
[14] Zeng, H. B.; Teo, K. L.; He, Y., A new looped-functional for stability analysis of sampled-data systems, Automatica, 82, 328-331 (2017) · Zbl 1372.93153
[15] Zeng, H. B.; Zhai, Z. L.; He, Y.; Teo, K. L.; Wang, W., New insights on stability of sampled-data systems with time-delay, Appl. Math. Comput., 374, Article 125041 pp. (2020) · Zbl 1433.93110
[16] Yang, B.; Hao, M. N.; Cao, J. J.; Zhao, X. D., Delay-dependent global exponential stability for neural networks with time-varying delay, Neurocomputing, 338, 172-180 (2019)
[17] Zeng, H. B.; He, Y.; Wu, M.; She, J. H., Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. Autom. Control, 60, 10, 2768-2772 (2015) · Zbl 1360.34149
[18] Zhang, C. K.; He, Y.; Jiang, L.; Lin, W. J.; Wu, M., Delay-dependent stability analysis of neural networks with time-varying delay: a generalized free-weighting-matrix approach, Appl. Math. Comput., 294, 102-120 (2017) · Zbl 1411.92012
[19] He, Y.; Wang, Q. G.; Lin, C.; Wu, M., Delay-range-dependent stability for systems with time-varying delay, Automatica, 43, 2, 371-376 (2007) · Zbl 1111.93073
[20] Sun, J.; Liu, G. P.; Chen, J.; Rees, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 2, 466-470 (2010) · Zbl 1205.93139
[21] Lee, S. H.; Park, M. J.; Kwon, O. M.; Choi, S. G., Less conservative stability criteria for general neural networks through novel delay-dependent functional, Appl. Math. Comput., 420, Article 126886 pp. (2022) · Zbl 1510.34160
[22] Zhang, X. M.; Han, Q. L., New Lyapunov−Krasovskii functionals for global asymptotic stability of delayed neural networks, IEEE Trans. Neural Netw., 20, 3, 533-539 (2009)
[23] Hu, T. T.; He, Z.; Zhang, X. J.; Zhong, S. M.; Yao, X. Q., New fractional-order integral inequalities: application to fractional-order systems with time-varying delay, J. Franklin Inst., 358, 7, 3847-3867 (2021) · Zbl 1464.93062
[24] Shafiya, M.; Nagamani, G.; Dafik, D., Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality, Math. Comput. Simul., 191, 168-186 (2022) · Zbl 1540.34033
[25] Yao, X.; Yu, J. T.; Li, W. X.; Feng, J. Q., Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links, Appl. Math. Comput., 389, Article 125498 pp. (2021) · Zbl 1508.93328
[26] Belarbi, S.; Dahmani, Z., On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10, 3, 1-12 (2009) · Zbl 1184.26011
[27] Denton, Z.; Vatsala, A. S., Fractional integral inequalities and applications, Comput. Math. Appl., 59, 3, 1087-1094 (2010) · Zbl 1189.26044
[28] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3-22 (2002) · Zbl 1009.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.