×

Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions. (English) Zbl 07743968

Summary: The present paper is devoted to study of certain classes of homogeneous regular subalgebras of the algebra of all complex-valued measurable functions on the unit interval. It is known that the transcendence degree of a commutative unital regular algebra is one of the important invariants of such algebras together with Boolean algebra of its idempotents. It is also known that if \((\Omega, \Sigma, \mu)\) is a Maharam homogeneous measure space, then two homogeneous unital regular subalgebras of \(S(\Omega)\) are isomorphic if and only if their Boolean algebras of idempotents are isomorphic and transcendence degrees of these algebras coincide.
Let \(S(0,1)\) be the algebra of all (classes of equivalence) measurable complex-valued functions and let \(AD^{(n)}(0,1)\) (\(n\in \mathbb{N}\cup\{\infty\} \)) be the algebra of all (classes of equivalence of) almost everywhere \(n\)-times approximately differentiable functions on \([0,1].\) We prove that \(AD^{(n)}(0,1)\) is a regular, integrally closed, \( \rho \)-closed, \(c\)-homogeneous subalgebra in \(S(0,1)\) for all \(n\in \mathbb{N}\cup\{\infty\},\) where \(c\) is the continuum. Further we show that the algebras \(S(0,1)\) and \(AD^{(n)}(0,1)\) are isomorphic for all \(n\in \mathbb{N}\cup\{\infty\}\) . As an application of these results we obtain that the dimension of the linear space of all derivations on \(S(0,1)\) and the order of the group of all band preserving automorphisms of \(S(0,1)\) coincide and are equal to \(2^c.\) Finally, we show that the Lie algebra \(\operatorname{Der} S(0, 1)\) of all derivations on \(S(0,1)\) contains a subalgebra isomorphic to the infinite dimensional Witt algebra.

MSC:

46J30 Subalgebras of commutative topological algebras
46J40 Structure and classification of commutative topological algebras
47B47 Commutators, derivations, elementary operators, etc.

References:

[1] Neumann J. V., “On Regular Rings”, Proceedings of the National Academy of Sciences of the United States of America, 22:12 (1936), 707-713 · Zbl 0015.38802 · doi:10.1073/pnas.22.12.707
[2] Neumann J. V., “Continuous Rings and Their Arithmetics”, Proceedings of the National Academy of Sciences of the United States of America, 23:6 (1937), 341-349 · Zbl 0017.14804 · doi:10.1073/pnas.23.6.341
[3] Neumann J. V., Continuous Geometry, Princeton University Press, Princeton, N.J., 1960 · Zbl 0171.28003
[4] Ayupov Sh. A., Kudaybergenov K. K., “Ring Isomorphisms of Murray-von Neumann Algebras”, Journal of Functional Analysis, 280:5 (2021), 108891 · Zbl 1460.46047 · doi:10.1016/j.jfa.2020.108891
[5] Ayupov Sh. A., Kudaybergenov K. K., “Ring Isomorphisms of \(\ast \)-Subalgebras of Murray-von Neumann Factors”, Lobachevskii Journal of Mathematics, 42:12 (2021), 2730-2739 · Zbl 1490.46056 · doi:10.1134/S1995080221120064
[6] Mori M., “Lattice Isomorphisms Between Projection Lattices of von Neumann Algebras”, Forum of Mathematics, Sigma, 8:49 (2020), 19 pp. · Zbl 1466.46049 · doi:10.1017/fms.2020.53
[7] Kusraev A. G., “Automorphisms and Derivations on a Universally Complete Complex \(f\)-Algebra”, Siberian Mathematical Journal, 47:1 (2006), 77-85 · Zbl 1113.46043 · doi:10.1007/s11202-006-0010-0
[8] Ayupov Sh. A., Kudaybergenov K. K., Karimov Kh., “Isomorphisms of Commutative Regular Algebras”, Positivity, 26 (2022), 11, 15 pp. · Zbl 1494.46055 · doi:10.1007/s11117-022-00872-7
[9] Berberian S. K., “Baer \(\ast \)-Rings”, Grundlehren der mathematischen Wissenschaften, 195 (1972), Springer-Verlag, New York-Berlin · Zbl 0242.16008 · doi:10.1007/978-3-642-15071-5_3
[10] Goodearl K. R., Von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman, Boston, Massachusetts-London, 1979 · Zbl 0411.16007
[11] Clifford A. N., Preston G. B., The Algebraic Theory of Semigroup, Mathemtical Surveys, American Mathematical Society, 1961 · Zbl 0111.03403
[12] Ber A. F., Chilin V. I., Sukochev F. A., “Non-trivial Derivations on Commutative Regular Algebras”, Extracta Mathematicae, 21:2 (2006), 107-147 · Zbl 1129.46056
[13] Fremlin D., “Measure Algebras”, Handbook of Boolean algebras, v. 3, North-Holland, Amsterdam, 1989, 877-980
[14] Gutman A. E., Kusraev A. G., Kutateladze S. S., “The Wickstead Problem”, Siberian Electronic Mathematical Reports, 5 (2008), 293-333 · Zbl 1299.46004
[15] Maharam D., “On Homogeneous Measure Algebras”, Proceedings of the National Academy of Sciences of the United States of America, 28:3 (1942), 108-111 · Zbl 0063.03723 · doi:10.1073/pnas.28.3.108
[16] Vladimirov D. A., Boolean Algebras in Analysis, Mathematics and Its Applications, 540, Kluwer Academic Publishers, Dordrecht, 2002 · Zbl 1036.06001 · doi:10.1007/978-94-017-0936-1
[17] Federer H., Geometric Measure Theory, Springer, Heidelberg-New York, 1996 · Zbl 0874.49001
[18] Ber A. F., Kudaybergenov K. K., Sukochev F. A., “Notes on Derivations of Murray-von Neumann Algebras”, Journal of Functional Analysis, 279:5 (2020), 108589 · Zbl 1461.46056 · doi:10.1016/j.jfa.2020.108589
[19] Ber A. F., “Derivations on Commutative Regular Algebras”, Siberian Advances in Mathematics, 21 (2011), 161-169 · Zbl 1249.13020 · doi:10.3103/S1055134411030011
[20] Whitney H., “On Totally Differentiable and Smooth Functions”, Pacific Journal of Mathematics, 1:1 (1951), 143-159 · Zbl 0043.05803 · doi:10.2140/pjm.1951.1.143
[21] Movshovich E. E., “Extension of Lipschitz Functions”, Mathematical Notes, 27 (1980), 92-93 · Zbl 0447.28004 · doi:10.1007/BF01143005
[22] Jacobson N., Lectures in Abstract Algebra, v. II, Linear Algebra, Springer-Verlag, New York-Berlin, 1975 · Zbl 0314.15001 · doi:10.1007/978-1-4684-7053-6
[23] Cartan E., “Les Groupes de Transformations Continus, Infinis, Simples”, Annales Scientifiques de l’École Normale Supérieure, 26 (1909), 93-161 · JFM 40.0193.02 · doi:10.24033/asens.603
[24] Bogachev V. I., Measure Theory, v. I, Springer-Verlag, Berlin, 2007 · Zbl 1120.28001
[25] Ber A. F., Kudaybergenov K. K., Sukochev F. A., “Derivation on Murray-von Neumann Algebras”, Russian Mathematical Surveys, 74:5 (2019), 950-952 · Zbl 1450.46053 · doi:10.4213/rm9902
[26] Ber A. F., Kudaybergenov K. K., Sukochev F. A., “Derivations of Murray-von Neumann Algebras”, Journal für die Reine und Angewandte Mathematik, 791:10 (2022), 283-301 · Zbl 1506.46046 · doi:10.1515/crelle-2022-0051
[27] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht, 2000 · Zbl 0983.47025 · doi:10.1007/978-94-015-9349-6_4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.