×

Ring isomorphisms of \(\ast \)-subalgebras of Murray-von Neumann factors. (English) Zbl 1490.46056

Summary: The present paper is devoted to study of ring isomorphisms of \(\ast \)-subalgebras of Murray-von Neumann factors. Let \(\mathcal{M},\mathcal{N}\) be von Neumann factors of type II\(_1,\) and let \(S(\mathcal{M}),S(\mathcal{N})\) be the \(\ast \)-algebras of all measurable operators affiliated with \(\mathcal{M}\) and \(\mathcal{N}\), respectively. Suppose that \(\mathcal{A}\subset S(\mathcal{M})\), \(\mathcal{B}\subset S(\mathcal{N})\) are their \(\ast \)-subalgebras such that \(\mathcal{M}\subset\mathcal{A}\), \(\mathcal{N}\subset\mathcal{B} \). We prove that for every ring isomorphism \(\Phi:\mathcal{A}\to\mathcal{B}\) there exist a positive invertible element \(a\in\mathcal{B}\) with \(a^{-1}\in\mathcal{B}\) and a real \(\ast \)-isomorphism \(\Psi:\mathcal{M}\to\mathcal{N} \) (which extends to a real \(\ast \)-isomorphism from \(\mathcal{A}\) onto \(\mathcal{B}\)) such that \(\Phi(x)=a\Psi(x)a^{-1}\) for all \(x\in\mathcal{A} \). In particular, \( \Phi\) is real-linear and continuous in the measure topology. In particular, noncommutative Arens algebras and noncommutative \(L_{log} \)-algebras associated with von Neumann factors of type II\(_1\) satisfy the above conditions and the main theorem implies the automatic continuity of their ring isomorphisms in the corresponding metrics. We also present an example of a \(\ast \)-subalgebra in \(S(\mathcal{M})\), which shows that the condition \(\mathcal{M}\subset\mathcal{A}\) is essential in the above mentioned result.

MSC:

46L10 General theory of von Neumann algebras
47B48 Linear operators on Banach algebras
16W99 Associative rings and algebras with additional structure
46L51 Noncommutative measure and integration

References:

[1] Abdullaev, R. Z., The dual space for Arens algebra, Uzbek. Math. Zh., 2, 3-7 (1997) · Zbl 0926.46053
[2] Arens, R., The space \(L^{\omega}\), Bull. Am. Math. Soc., 52, 931-935 (1946) · Zbl 0060.26901 · doi:10.1090/S0002-9904-1946-08681-4
[3] Albeverio, S.; Ayupov, Sh. A.; Kudaybergenov, K. K., Non-commutative Arens algebras and their derivations, J. Funct. Anal., 253, 287-302 (2007) · Zbl 1138.46040 · doi:10.1016/j.jfa.2007.04.010
[4] Albeverio, S.; Ayupov, Sh. A.; Kudaybergenov, K. K.; Djumamuratov, R., Automorphisms of central extensions of type I von Neumann algebras, Studia Math., 207, 1-17 (2011) · Zbl 1246.46058 · doi:10.4064/sm207-1-1
[5] Antonovskii, M. Ya.; Boltyanskii, V. G., Tikhonov semifields and certain problems in general topology, Russ. Math. Surv., 25, 1-43 (1970) · Zbl 0213.49204 · doi:10.1070/RM1970v025n03ABEH003791
[6] Ayupov, Sh. A., Homomorphisms of a class of rings and two-valued measures on Boolean algebras, Funct. Anal. Appl., 11, 217-219 (1977) · Zbl 0421.16024 · doi:10.1007/BF01079467
[7] Ayupov, Sh. A.; Kudaybergenov, K. K., Infinite dimensional central simple regular algebras with outer derivations, Lobachevskii J. Math., 41, 326-332 (2020) · Zbl 1465.46068 · doi:10.1134/S1995080220030063
[8] Sh. A. Ayupov and K. K. Kudaybergenov, ‘‘Ring isomorphisms of Murray-von Neumann algebras,’’ J. Funct. Anal. 280, 108891 (2021). · Zbl 1460.46047
[9] S. K. Berberian, Baer \(\ast \)-rings (Springer, Berlin, 1972). · Zbl 0242.16008
[10] Bezushchak, O. O., Derivations and automorphisms of locally matrix algebras and groups, Dopov. Nat. Acad. Sci. Ukr., 9, 19-23 (2020) · Zbl 1474.16106
[11] Bikchentaev, A. M., Minimality of convergence in measure topologies on finite von Neumann algebras, Math. Notes, 75, 315-321 (2004) · Zbl 1063.46049 · doi:10.1023/B:MATN.0000023310.15215.c6
[12] Birkhoff, G., Lattice Theory (1967), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 0153.02501
[13] Ciach, L., Linear-topological spaces of operators affiliated with von Neumann algebra, Bull. Polish Acad. Sc., 31, 161-166 (1983) · Zbl 0535.46039
[14] Dykema, K.; Sukochev, F. A.; Zanin, D., Algebras of log-integrable functions and operators, Complex Anal. Oper. Theory, 10, 1775-1787 (2016) · Zbl 1373.46059 · doi:10.1007/s11785-016-0569-9
[15] Dykema, K.; Sukochev, F. A.; Zanin, D., An upper triangular decomposition theorem for some unbounded operators affiliated to II \({}_1\), Israel J. Math., 222, 645-709 (2017) · Zbl 1497.47056 · doi:10.1007/s11856-017-1603-y
[16] Inoue, A., On a class of unbounded operator algebras. II, Pacif. J. Math., 66, 411-431 (1976) · Zbl 0355.46034 · doi:10.2140/pjm.1976.66.411
[17] Kadison, R.; Ringrose, J., Fundamentals of the Theory of Operator Algebras. II (1986), New York: Academic, New York · Zbl 0601.46054
[18] Kadison, R.; Liu, Z., A note on derivations of Murray-von Neumann algebras, Proc. Natl. Acad. Sci. U.S.A., 111, 2087-2093 (2014) · Zbl 1355.46049 · doi:10.1073/pnas.1321358111
[19] Muratov, M. A.; Chilin, V. I., Algebras of Measurable and Locally Measurable Operators (2007), Kiev: Inst. Math. Ukr. Acad. Sci, Kiev · Zbl 1199.47002
[20] Mori, M., Lattice isomorphisms between projection lattices of von Neumann algebras, Forum Math. Sigma, 8, 1-19 (2020) · Zbl 1466.46049 · doi:10.1017/fms.2020.53
[21] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116 (1974) · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[22] von Neumann, J., Continuous rings and their arithmetics, Proc. Natl. Acad. Sci. U.S.A., 23, 341-349 (1937) · Zbl 0017.14804 · doi:10.1073/pnas.23.6.341
[23] von Neumann, J., Continuous Geometry (1960), Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 0171.28003
[24] Saitô, K., On the algebra of measurable operators for a general \(AW^*\), Tohoku Math. J., 23, 525-534 (1971) · Zbl 0231.46102
[25] Sakai, S., \(C^*\)-Algebras and \(W^*\)-Algebras (1998), Berlin: Springer, Berlin · Zbl 1024.46001 · doi:10.1007/978-3-642-61993-9
[26] Segal, I. E., A non-commutative extension of abstract integration, Ann. Math., 57, 401-457 (1953) · Zbl 0051.34201 · doi:10.2307/1969729
[27] Skornyakov, L. A., Complemented Modular Lattices and Regular Rings (1964), London: Oliver and Boyd, London · Zbl 0156.04101
[28] Ulam, S., Zur Mass theory inder allgemeinen Mengenlehre, Fund. Math., 16, 140-150 (1930) · JFM 56.0920.04 · doi:10.4064/fm-16-1-140-150
[29] Tauer, R. J., Maximal abelian subalgebras in finite factors of type II, Trans. Am. Math. Soc., 114, 281-308 (1965) · Zbl 0151.18603 · doi:10.1090/S0002-9947-1965-0182892-0
[30] Yosida, K., Functional Analysis (1980), Berlin: Springer, Berlin · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.