×

Unsupervised video rain streaks removal with deep foreground-background modeling. (English) Zbl 07738676

Summary: Outdoor video rain streaks removal is an important inverse problem in video processing that benefits subsequent applications. Traditional methods utilize prior information with interpretable domain knowledge while they are not tenable to capture complex structures of real-world videos. Deep learning methods learn a deraining mapping with a large model capacity brought by deep neural networks and their performances highly depend on the volume and diversity of training data. To address the challenging video deraining problem, we suggest an unsupervised video rain streaks removal method by solely using the observed rainy video. For the complex clean video, inspired by the classical foreground-background decomposition, we employ a deep convolutional neural network to capture the moving foreground and a disentangled deep spatial-temporal network with an affine operator to capture the underlying low-rank structure of the dynamic background. The foreground and background components are well balanced by a learnable probability mask. For structured rain streaks, we introduce a learnable total variation regularization whose parameters (i.e., rain directions) can be unsupervisedly learned. The deep modeling of the complex clean video and the simple yet effective modeling of structured rain streaks under the physical interpretable decomposition framework, which benefit each other in nature, are organically integrated to boost the deraining performance. Extensive experiments on synthetic and real-world rainy videos demonstrate the superiority of our method over state-of-the-art traditional and deep learning-based video deraining methods.

MSC:

68U10 Computing methodologies for image processing
68Txx Artificial intelligence
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90Cxx Mathematical programming
65Kxx Numerical methods for mathematical programming, optimization and variational techniques
Full Text: DOI

References:

[1] C. Feichtenhofer, X3D: Expanding Architectures for Efficient Video Recognition, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 200-210.
[2] S. Beery, G. Wu, V. Rathod, R. Votel, J. Huang, Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 13072-13082.
[3] Y. Zhang, Z. Qiu, T. Yao, C.-W. Ngo, D. Liu, T. Mei, Transferring and Regularizing Prediction for Semantic Segmentation, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 9618-9627.
[4] Bahnsen, C. H.; Moeslund, T. B., Rain removal in traffic surveillance: Does it matter?, IEEE Trans. Intell. Transp. Syst., 20, 8, 2802-2819 (2019)
[5] J. Chen, C.-H. Tan, J. Hou, L.-P. Chau, H. Li, Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6286-6295.
[6] J. Liu, W. Yang, S. Yang, Z. Guo, Erase or Fill? Deep Joint Recurrent Rain Removal and Reconstruction in Videos, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 3233-3242.
[7] K. Garg, S. Nayar, Detection and removal of rain from videos, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vol. 1, CVPR, 2004.
[8] K. Garg, S. Nayar, When does a camera see rain?, in: IEEE International Conference on Computer Vision, Vol. 2, ICCV, 2, 2005, pp. 1067-1074.
[9] You, S.; Tan, R. T.; Kawakami, R.; Mukaigawa, Y.; Ikeuchi, K., Adherent raindrop modeling, detection and removal in video, IEEE Trans. Pattern Anal. Mach. Intell., 38, 9, 1721-1733 (2016)
[10] Wang, Y.; Huang, T.-Z.; Zhao, X.-L.; Jiang, T.-X., Video deraining via nonlocal low-rank regularization, Appl. Math. Model., 79, 896-913 (2020) · Zbl 1481.94037
[11] Santhaseelan, V.; Asari, V. K., Utilizing local phase information to remove rain from video, Int. J. Comput. Vis., 112, 1, 71-89 (2015)
[12] X. Zhang, H. Li, Y. Qi, W.K. Leow, T.K. Ng, Rain Removal in Video by Combining Temporal and Chromatic Properties, in: International Conference on Multimedia and Expo, ICME, 2006, pp. 461-464.
[13] Y.-L. Chen, C.-T. Hsu, A Generalized Low-Rank Appearance Model for Spatio-temporally Correlated Rain Streaks, in: IEEE International Conference on Computer Vision, ICCV, 2013, pp. 1968-1975.
[14] W. Ren, J. Tian, Z. Han, A. Chan, Y. Tang, Video Desnowing and Deraining Based on Matrix Decomposition, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 2838-2847.
[15] W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, Z. Xu, Should We Encode Rain Streaks in Video as Deterministic or Stochastic?, in: IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2535-2544.
[16] M. Li, Q. Xie, Q. Zhao, W. Wei, S. Gu, J. Tao, D. Meng, Video Rain Streak Removal by Multiscale Convolutional Sparse Coding, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6644-6653.
[17] Deng, L.-J.; Huang, T.; Zhao, X.-L.; Jiang, T.-X., A directional global sparse model for single image rain removal, Appl. Math. Model., 59, 662-679 (2018) · Zbl 1480.94006
[18] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, Y. Wang, A Novel Tensor-Based Video Rain Streaks Removal Approach via Utilizing Discriminatively Intrinsic Priors, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 2818-2827.
[19] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Deng, L.-J.; Wang, Y., FastDeRain: A novel video rain streak removal method using directional gradient priors, IEEE Trans. Image Process., 28, 4, 2089-2102 (2019)
[20] Kim, J.-H.; Sim, J.-Y.; Kim, C.-S., Video deraining and desnowing using temporal correlation and low-rank matrix completion, IEEE Trans. Image Process., 24, 9, 2658-2670 (2015) · Zbl 1408.94308
[21] Li, M.; Cao, X.; Zhao, Q.; Zhang, L.; Meng, D., Online rain/snow removal from surveillance videos, IEEE Trans. Image Process., 30, 2029-2044 (2021)
[22] Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L., Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26, 7, 3142-3155 (2017) · Zbl 1409.94754
[23] Kappeler, A.; Yoo, S.; Dai, Q.; Katsaggelos, A. K., Video super-resolution with convolutional neural networks, IEEE Trans. Comput. Imaging, 2, 2, 109-122 (2016)
[24] Hou, R.; Li, F., IDPCNN: Iterative denoising and projecting CNN for MRI reconstruction, J. Comput. Appl. Math., 406, Article 113973 pp. (2022) · Zbl 1482.94017
[25] Yang, W.; Tan, R. T.; Wang, S.; Fang, Y.; Liu, J., Single image deraining: From model-based to data-driven and beyond, IEEE Trans. Pattern Anal. Mach. Intell., 43, 11, 4059-4077 (2021)
[26] W. Yang, J. Liu, J. Feng, Frame-Consistent Recurrent Video Deraining With Dual-Level Flow, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 1661-1670.
[27] T. Liu, M. Xu, Z. Wang, Removing Rain in Videos: A Large-Scale Database and a Two-Stream ConvLSTM Approach, in: International Conference on Multimedia and Expo, ICME, 2019, pp. 664-669.
[28] Z. Yue, J. Xie, Q. Zhao, D. Meng, Semi-Supervised Video Deraining with Dynamical Rain Generator, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 642-652.
[29] Liu, J.; Yang, W.; Yang, S.; Guo, Z., D3R-Net: Dynamic routing residue recurrent network for video rain removal, IEEE Trans. Image Process., 28, 2, 699-712 (2019) · Zbl 1409.94374
[30] X. Liu, R. Liu, L. Ma, X. Fan, Z. Luo, Spatial-Temporal Integration Network with Self-Guidance for Robust Video Deraining, in: International Conference on Multimedia and Expo, ICME, 2021.
[31] W. Zhong, X. Zhang, L. Ma, R. Liu, X. Fan, Z. Luo, Star-Net: Spatial-Temporal Attention Residual Network for Video Deraining, in: International Conference on Multimedia and Expo, ICME, 2021.
[32] X. Xue, X. Meng, L. Ma, Y. Wang, R. Liu, X. Fan, Searching Frame-Recurrent Attentive Deformable Network for Real-Time Video Deraining, in: International Conference on Multimedia and Expo, ICME, 2021.
[33] L. Ma, R. Liu, X. Zhang, W. Zhong, X. Fan, Video Deraining Via Temporal Aggregation-and-Guidance, in: International Conference on Multimedia and Expo, ICME, 2021.
[34] Wang, Y.-T.; Zhao, X.-L.; Jiang, T.-X.; Deng, L.-J.; Chang, Y.; Huang, T.-Z., Rain streaks removal for single image via kernel-guided convolutional neural network, IEEE Trans. Neural Netw. Learn. Syst., 32, 8, 3664-3676 (2021)
[35] C. Yu, Y. Chang, Y. Li, X. Zhao, L. Yan, Unsupervised Image Deraining: Optimization Model Driven Deep CNN, in: ACM International Conference on Multimedia, ACM MM, 2021, pp. 2634-2642.
[36] Kang, L.-W.; Lin, C.-W.; Fu, Y.-H., Automatic single-image-based rain streaks removal via image decomposition, IEEE Trans. Image Process., 21, 4, 1742-1755 (2012) · Zbl 1373.94199
[37] Y. Luo, Y. Xu, H. Ji, Removing Rain from a Single Image via Discriminative Sparse Coding, in: IEEE International Conference on Computer Vision, ICCV, 2015, pp. 3397-3405.
[38] J.-H. Kim, C. Lee, J.-Y. Sim, C.-S. Kim, Single-image deraining using an adaptive nonlocal means filter, in: International Conference on Image Processing, ICIP, 2013, pp. 914-917.
[39] H. Zhang, V.M. Patel, Convolutional Sparse and Low-Rank Coding-Based Rain Streak Removal, in: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV, 2017, pp. 1259-1267.
[40] Y. Li, R.T. Tan, X. Guo, J. Lu, M.S. Brown, Rain Streak Removal Using Layer Priors, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 2736-2744.
[41] Yan, S.; Ni, G.; Zeng, T., Image restoration based on fractional-order model with decomposition: texture and cartoon, Comput. Appl. Math., 40, 304 (2021) · Zbl 1499.65250
[42] Fu, X.; Huang, J.; Ding, X.; Liao, Y.; Paisley, J., Clearing the skies: A deep network architecture for single-image rain removal, IEEE Trans. Image Process., 26, 6, 2944-2956 (2017) · Zbl 1409.94161
[43] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, J. Paisley, Removing Rain from Single Images via a Deep Detail Network, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 1715-1723.
[44] S. Deng, M. Wei, J. Wang, Y. Feng, L. Liang, H. Xie, F.L. Wang, M. Wang, Detail-recovery Image Deraining via Context Aggregation Networks, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 14548-14557.
[45] W. Yang, R.T. Tan, J. Feng, J. Liu, Z. Guo, S. Yan, Deep Joint Rain Detection and Removal from a Single Image, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 1685-1694.
[46] H. Zhang, V.M. Patel, Density-Aware Single Image De-raining Using a Multi-stream Dense Network, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 695-704.
[47] H. Wang, Q. Xie, Q. Zhao, D. Meng, A Model-Driven Deep Neural Network for Single Image Rain Removal, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 3100-3109.
[48] H. Wang, Z. Yue, Q. Xie, Q. Zhao, Y. Zheng, D. Meng, From Rain Generation to Rain Removal, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 14791-14801.
[49] R. Yasarla, V.A. Sindagi, V.M. Patel, Syn2Real Transfer Learning for Image Deraining Using Gaussian Processes, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 2723-2733.
[50] Zhu, L.; Deng, Z.; Hu, X.; Xie, H.; Xu, X.; Qin, J.; Heng, P.-A., Learning gated non-local residual for single-image rain streak removal, IEEE Trans. Circuits Syst. Video Technol., 31, 6, 2147-2159 (2021)
[51] M. Zhou, J. Xiao, Y. Chang, X. Fu, A. Liu, J. Pan, Z.-J. Zha, Image De-raining via Continual Learning, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 4905-4914.
[52] K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, J. Jiang, Multi-Scale Progressive Fusion Network for Single Image Deraining, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 8343-8352.
[53] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, R.W. Lau, Spatial Attentive Single-Image Deraining With a High Quality Real Rain Dataset, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 12262-12271.
[54] Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Han, Z.; Lu, T.; Huang, B.; Jiang, J., Decomposition makes better rain removal: An improved attention-guided deraining network, IEEE Trans. Circuits Syst. Video Technol., 31, 10, 3981-3995 (2021)
[55] Zhang, H.; Sindagi, V.; Patel, V. M., Image de-raining using a conditional generative adversarial network, IEEE Trans. Circuits Syst. Video Technol., 30, 11, 3943-3956 (2020)
[56] Y. Weng, G. Yang, C. Tang, H. Yang, R. Lu, F. Xu, J. Luo, iCycleGAN: An Improved CycleGAN for Rain Streak Removal From Single Image, in: International Conference on Industrial Artificial Intelligence, IAI, 2022, pp. 1-6.
[57] D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive Image Deraining Networks: A Better and Simpler Baseline, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 3932-3941.
[58] D. Chen, M. He, Q. Fan, J. Liao, L. Zhang, D. Hou, L. Yuan, G. Hua, Gated Context Aggregation Network for Image Dehazing and Deraining, in: WACV, 2019, pp. 1375-1383.
[59] J. Xiao, M. Zhou, X. Fu, A. Liu, Z.-J. Zha, Improving De-raining Generalization via Neural Reorganization, in: IEEE International Conference on Computer Vision, ICCV, 2021, pp. 4967-4976.
[60] F. Jia, W.H. Wong, T. Zeng, DDUNet: Dense Dense U-Net with Applications in Image Denoising, in: IEEE/CVF International Conference on Computer Vision Workshops, ICCVW, 2021, pp. 354-364.
[61] Zhang, K.; Li, D.; Luo, W.; Ren, W.; Liu, W., Enhanced spatio-temporal interaction learning for video deraining: A faster and better framework, IEEE Trans. Pattern Anal. Mach. Intell. (2022)
[62] Mu, P.; Liu, Z.; Liu, Y.; Liu, R.; Fan, X., Triple-level model inferred collaborative network architecture for video deraining, IEEE Trans. Image Process., 31, 239-250 (2022)
[63] W. Yang, R.T. Tan, S. Wang, J. Liu, Self-Learning Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 1717-1726.
[64] W. Yan, R.T. Tan, W. Yang, D. Dai, Self-Aligned Video Deraining with Transmission-Depth Consistency, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 11961-11971.
[65] J.-H. Kim, J.-Y. Sim, C.-S. Kim, Stereo video deraining and desnowing based on spatiotemporal frame warping, in: International Conference on Image Processing, ICIP, 2014, pp. 5432-5436.
[66] Zhu, L.; Fan, H.; Luo, Y.; Xu, M.; Yang, Y., Temporal cross-layer correlation mining for action recognition, IEEE Trans. Multimed., 24, 668-676 (2022)
[67] L. Zhu, Z. Xu, Y. Yang, Bidirectional Multirate Reconstruction for Temporal Modeling in Videos, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 1339-1348.
[68] Lei, C.; Xing, Y.; Chen, Q., Blind video temporal consistency via deep video prior, (Neural Information Processing Systems (NeurIPS), Vol. 33 (2020)), 1083-1093
[69] Cascarano, P.; Comes, M. C.; Mencattini, A.; Parrini, M. C.; Piccolomini, E. L.; Martinelli, E., Recursive Deep Prior Video: A super resolution algorithm for time-lapse microscopy of organ-on-chip experiments, Med. Image Anal., 72, Article 102124 pp. (2021)
[70] H. Zhang, L. Mai, H. Jin, Z. Wang, N. Xu, J. Collomosse, An Internal Learning Approach to Video Inpainting, in: IEEE International Conference on Computer Vision, ICCV, 2019, pp. 2720-2729.
[71] Yang, W.; Tan, R. T.; Wang, S.; Kot, A. C.; Liu, J., Learning to remove rain in video with self-supervision, IEEE Trans. Pattern Anal. Mach. Intell. (2022)
[72] Zhuang, J.-H.; Luo, Y.-S.; Zhao, X.-L.; Jiang, T.-X., Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal, IEEE Signal Process. Lett., 28, 2147-2151 (2021)
[73] Barnich, O.; Van Droogenbroeck, M., ViBe: A universal background subtraction algorithm for video sequences, IEEE Trans. Image Process., 20, 6, 1709-1724 (2011) · Zbl 1372.94018
[74] Maddalena, L.; Petrosino, A., A self-organizing approach to background subtraction for visual surveillance applications, IEEE Trans. Image Process., 17, 7, 1168-1177 (2008)
[75] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Deng, L.-J., Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm, J. Comput. Appl. Math., 372, Article 112680 pp. (2020) · Zbl 1432.68530
[76] A. Aravkin, S. Becker, V. Cevher, P. Olsen, A variational approach to stable principal component pursuit, in: Conference on Uncertainty in Artificial Intelligence, UAI, 2014.
[77] Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S., Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Trans. Pattern Anal. Mach. Intell., 42, 4, 925-938 (2020)
[78] Jiang, T.-X.; Ng, M. K.; Zhao, X.-L.; Huang, T.-Z., Framelet representation of tensor nuclear norm for third-order tensor completion, IEEE Trans. Image Process., 29, 7233-7244 (2020) · Zbl 07586396
[79] V. Lempitsky, A. Vedaldi, D. Ulyanov, Deep Image Prior, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 9446-9454.
[80] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, in: MICCAI, 2015, pp. 234-241.
[81] Bioucas-Dias, J. M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J., Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 2, 354-379 (2012)
[82] Miao, Y.-C.; Zhao, X.-L.; Fu, X.; Wang, J.-L.; Zheng, Y.-B., Hyperspectral denoising using unsupervised disentangled spatiospectral deep priors, IEEE Trans. Geosci. Remote Sens., 60, 1-16 (2022)
[83] D. Ren, K. Zhang, Q. Wang, Q. Hu, W. Zuo, Neural Blind Deconvolution Using Deep Priors, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 3338-3347.
[84] Y. Gandelsman, A. Shocher, M. Irani, “Double-DIP”: Unsupervised Image Decomposition via Coupled Deep-Image-Priors, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11018-11027.
[85] Yang, J.-H.; Zhao, X.-L.; Ma, T.-H.; Chen, Y.; Huang, T.-Z.; Ding, M., Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, J. Comput. Appl. Math., 363, 124-144 (2020) · Zbl 1429.94027
[86] D. Kingma, J. Ba, ADAM: A Method for Stochastic Optimization, in: ICLR, 2014.
[87] K. Garg, S.K. Nayar, Photorealistic Rendering of Rain Streaks, in: ACM Special Interest Group for Computer Graphics, ACM SIGGRAPH, 2006, pp. 996-1002.
[88] W. Wei, D. Meng, Q. Zhao, Z. Xu, Y. Wu, Semi-Supervised Transfer Learning for Image Rain Removal, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 3872-3881.
[89] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2980-2988.
[90] Barbano, R.; Leuschner, J.; Schmidt, M.; Denker, A.; Hauptmann, A.; Maass, P.; Jin, B., An educated warm start for deep image prior-based micro CT reconstruction, IEEE Trans. Comput. Imaging, 8, 1210-1222 (2022)
[91] Zhang, K.; Xie, M.; Gor, M.; Chen, Y.-T.; Zhou, Y.; Metzler, C. A., MetaDIP: Accelerating deep image prior with meta learning (2022), arXiv:2209.08452
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.