×

Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. (English) Zbl 1429.94027

Summary: In this paper, we propose a novel model for remote sensing images destriping, which includes the Schatten 1/2-norm and the unidirectional first-order and high-order total variation regularization. The main idea is that the stripe layer is low-rank, and the desired image possesses smoothness across stripes. Therefore, we use the Schatten 1/2-norm regularization to depict the low-rankness of stripes, and use the unidirectional total variation and the unidirectional high-order total variation to guarantee the smoothness of the underlying image. We develop the alternating direction method of multipliers algorithm to solve the proposed model. Extensive experiments on synthetic and real data are reported to show the superiority of the proposed method over state-of-the-art methods in terms of both quantitative and qualitative assessments.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
90C26 Nonconvex programming, global optimization
90C90 Applications of mathematical programming
Full Text: DOI

References:

[1] Lu, X. Q.; Wang, Y. L.; Yuan, Y., Graph-regularized low-rank representation for destriping of hyperspectral images, IEEE Trans. Geosci. Remote Sens., 51, 7, 4009-4018 (2013) · Zbl 1395.90100
[2] Zhang, Y. Z.; Zhou, G.; Yan, L. X.; Zhang, T. X., A destriping algorithm based on TV-stokes and unidirectional total variation model, Optik, 127, 1, 428-439 (2016)
[3] Zhang, H. Y.; Li, J. Y.; Huang, Y. C.; Zhang, L. P., A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE J-Stars, 7, 6, 2056-2065 (2017)
[4] Tarabalka, Y.; Chanussot, J.; Benediktsson, J. A., Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recognit., 43, 7, 2367-2379 (2010) · Zbl 1209.68488
[5] Xiao, Z. G.; Chen, H.; Tu, C. H.; Klette, R., An effective graph and depth layer based RGB-D image foreground object extraction method, Comput. Vis. Med., 3, 4, 387-393 (2017)
[6] Stein, D. W.J.; Beaven, S. G.; Hoff, L. E.; Winter, E. M.; Schaum, A. P.; Stocker, A. D., Anomaly detection from hyperspectral imagery, IEEE Signal Process. Mag., 19, 1, 58-69 (2002)
[7] Cuzzocrea, A.; Mumolo, E.; Grasso, G. M., Advanced pattern recognition from complex environments: a classification-based approach, Soft Comput., 6, 1-16 (2017)
[8] Liu, J. G.; Morgan, G. L.K., FFT selective and adaptive filtering for removal of systematic noise in ETM+ imageodesy images, IEEE Trans. Geosci. Remote Sens., 44, 12, 3716-3724 (2006)
[9] Pande-Chhetri, R.; Abd-Elrahman, A., De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering, ISPRS J. Photogramm., 66, 5, 620-636 (2011)
[10] Torres, J.; Infante, S. O., Wavelet analysis for the elimination of striping noise in satellite images, Opt. Eng., 40, 7, 1309-1314 (2001)
[11] Horn, B. K.P.; Woodham, R. J., Destriping Landsat MSS images by histogram modification, Comput. Graph. Image Process., 10, 1, 69-83 (1979)
[12] Michael, W., Destriping multiple sensor imagery by improved histogram matching, Int. J. Remote Sens., 11, 5, 859-875 (1990)
[13] Gadallah, F. L.; Csillag, F.; Smith, E. J.M., Destriping multisensor imagery with moment matching, Int. J. Remote Sens., 21, 12, 2505-2511 (2000)
[14] Mach, T.; Reichel, L.; Barel, M. V.; Vandebril, R., Adaptive cross approximation for ill-posed problems, J. Comput. Appl. Math., 303, C, 206-217 (2016) · Zbl 1416.65565
[15] Wang, Y. T.; Zhao, X. L.; Jiang, T. X.; Deng, L. J.; Zhang, Y. T., A total variation and group sparsity based tensor optimization model for video rain streak removal, Signal Process. Image Commun., 73, 96-108 (2019)
[16] Zhou, X.; Zhou, F. G.; Bai, X. Z.; Xue, B. D., A boundary condition based deconvolution framework for image deblurring, J. Comput. Appl. Math., 261, 4, 14-29 (2014) · Zbl 1278.94014
[17] Matonoha, C.; Papác̆ek, S., On the connection and equivalence of two methods for solving an ill-posed inverse problem based on frap data, J. Comput. Appl. Math., 290, 598-608 (2015) · Zbl 1321.65145
[18] Deng, L. J.; Huang, T. Z.; Zhao, X. L.; Jiang, T. X., A directional global sparse model for single image rain removal, Appl. Math. Model., 59, 662-679 (2018) · Zbl 1480.94006
[19] Cui, L. B.; Li, M. H.; Song, Y. S., Preconditioned tensor splitting iterations method for solving multi-linear systems, Appl. Math. Lett., 96, 89-94 (2019) · Zbl 1503.65066
[20] Shen, H. F.; Zhang, L. P., A MAP-based algorithm for destriping and inpainting of remotely sensed images, IEEE Trans. Geosci. Remote Sens., 47, 5, 1492-1502 (2009)
[21] Bouali, M.; Ladjal, S., Toward optimal destriping of MODIS data using a unidirectional variational model, IEEE Trans. Geosci. Remote Sens., 49, 8, 2924-2935 (2011)
[22] Zhou, G.; Fang, H. Z.; Lu, C.; Wang, S. Y.; Zuo, Z. Y.; Hu, J., Robust destriping of MODIS and hyperspectral data using a hybrid unidirectional total variation model, Optik, 126, 7, 838-845 (2015)
[23] Chang, Y.; Fang, H.; Yan, L.; Liu, H., Robust destriping method with unidirectional total variation and framelet regularization, Opt. Express, 21, 20, 23307-23323 (2013)
[24] Liu, X. X.; Lu, X. L.; Shen, H. F.; Yuan, Q. Q.; Jiao, Y. L.; Zhang, L. P., Stripe noise separation and removal in remote sensing images by consideration of the global sparsity and local variational properties, IEEE Trans. Geosci. Remote Sens., 54, 5, 3049-3060 (2016)
[25] Chen, Y.; Huang, T. Z.; Zhao, X. L., Destriping of multispectral remote sensing image using low-rank tensor decomposition, IEEE J-Stars, 11, 12, 4950-4967 (2018)
[26] Chang, Y.; Yan, L. X.; Wu, T.; Zhong, S., Remote sensing image stripe noise removal: From image decomposition perspective, IEEE Trans. Geosci. Remote Sens., 54, 12, 7018-7031 (2016)
[27] Xu, Z. B.; Zhang, H.; Wang, Y.; Chang, X. Y.; Liang, Y., \(L_{1 / 2}\) Regularization, Sci. China Inf. Sci., 53, 6, 1159-1169 (2010) · Zbl 1497.62192
[28] Zhao, X. L.; Wang, F.; Ng, M. K., A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imaging Sci., 7, 1, 456-475 (2014) · Zbl 1296.65093
[29] Zhao, X. L.; Wang, W.; Zeng, T. Y.; Huang, T. Z.; Ng, M. K., Total variation structured total least squares method for image restoration, SIAM J. Sci. Comput., 35, 6, 1304-1320 (2013) · Zbl 1287.65014
[30] Reyes, J. C.D. L.; Schönlieb, C. B.; Valkonen, T., Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imaging Vision, 57, 1, 1-25 (2017) · Zbl 1425.94010
[31] Wang, S.; Huang, T. Z.; Zhao, X. L.; Mei, J. J.; Huang, J., Speckle noise removal in ultrasound images by first-order and second-order total variation, Numer. Algorithms, 1-21 (2017)
[32] Lazzaro, D.; Montefusco, L. B., Edge-preserving wavelet thresholding for image denoising, J. Comput. Appl. Math., 210, 1-2, 222-231 (2007) · Zbl 1145.68048
[33] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175
[34] Benning, M.; Brune, C.; Burger, M.; Müller, J., Higher-order TV methods - enhancement via Bregman iteration, J. Sci. Comput., 54, 2-3, 269-310 (2013) · Zbl 1308.94012
[35] Deng, L. Z.; Fang, Q.; Zhu, H.; Zhou, G., Image denoising based on spatially adaptive high order total variation model, (CISP-BMEI (2017)), 212-216
[36] Ding, M.; Huang, T. Z.; Wang, S.; Mei, J. J.; Zhao, X. L., Total variation with overlapping group sparsity for deblurring images under Cauchy noise, Appl. Math. Comput., 341, 128-147 (2019) · Zbl 1428.94021
[37] Ma, T. H.; Lou, Y. F.; Huang, T. Z., Truncated \(l_{1 - 2}\) models for sparse recovery and rank minimization, SIAM J. Imaging Sci., 10, 3, 1346-1380 (2017) · Zbl 1397.94021
[38] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 1-122 (2011) · Zbl 1229.90122
[39] Goldstein, T.; O’Donoghue, B.; Setzer, S.; Baraniuk, R., Fast alternating direction optimization methods, SIAM J. Imaging Sci., 7, 3, 1588-1623 (2014) · Zbl 1314.49019
[40] Jiang, T. X.; Huang, T. Z.; Zhao, X. L.; Deng, L. J.; Wang, Y., A novel video rain streak removal method using directional gradient priors, IEEE Trans. Image Process., 28, 4, 2089-2102 (2019)
[41] Zheng, Y. B.; Huang, T. Z.; Ji, T. Y.; Zhao, X. L.; Jiang, T. X.; Ma, T. H., Low-rank tensor completion via smooth matrix factorization, Appl. Math. Model., 70, 677-695 (2019) · Zbl 1462.90096
[42] Xu, Z.; Chang, X.; Xu, F.; Zhang, H., \(L_{1 / 2}\) Regularization: a thresholding representation theory and a fast solver, IEEE Trans. Neural Netw. Learn., 23, 7, 1013-1027 (2012)
[43] Zeng, J. S.; Lin, S. B.; Wang, Y.; Xu, Z. B., \(L_{1 / 2}\) Regularization: Convergence of iterative Half thresholding algorithm, IEEE Trans. Signal Process., 62, 9, 2317-2329 (2014) · Zbl 1393.90145
[44] Donoho, D. L., De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41, 3, 613-627 (2002) · Zbl 0820.62002
[45] Huang, J.; Huang, T. Z.; Zhao, X. L.; Xu, Z. B.; Lv, X. G., Two soft-thresholding based iterative algorithms for image deblurring, Inform. Sci., 271, 7, 179-195 (2014)
[46] Zuo, W. M.; Lin, Z. C., A generalized accelerated proximal gradient approach for total-variation-based image restoration, IEEE Trans. Image Process., 20, 10, 2748-2759 (2011) · Zbl 1372.94320
[47] Liu, R. W.; Shi, L.; Huang, W.; Xu, J.; Yu, S. C.; Wang, D., Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters, Magn. Reson. Imaging, 32, 6, 702-720 (2014)
[48] Weinreb, M. P.; Xie, R.; Lienesch, J. H.; Crosby, D. S., Destriping GOES images by matching empirical distribution functions, Remote Sens. Environ., 29, 2, 185-195 (1989)
[49] Chen, Y.; Huang, T. Z.; Zhao, X. L.; Deng, L. J., Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization, Appl. Math. Model., 63, 128-147 (2018) · Zbl 1480.65101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.