×

Estimating global charge violating amplitudes from wormholes. (English) Zbl 07693949

Summary: We consider the scattering of high energy and ultra relativistic spherically symmetric shells in asymptotically \(\mathrm{AdS}_D\) spacetimes. We analyze an exclusive amplitude where a single spherically symmetric shell goes in and a single one comes out, such that the two have different global symmetry charges of the effective gravity theory. We study a simple wormhole configuration that computes the square of the amplitude and analyze its properties.

MSC:

83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D14 (1976) 2460 [INSPIRE].
[2] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
[3] Lavrelashvili, GV; Rubakov, VA; Tinyakov, PG, Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity, JETP Lett., 46, 167 (1987)
[4] Lavrelashvili, GV; Rubakov, VA; Tinyakov, PG, Particle Creation and Destruction of Quantum Coherence by Topological Change, Nucl. Phys. B, 299, 757 (1988) · doi:10.1016/0550-3213(88)90372-0
[5] Coleman, SR, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B, 307, 867 (1988) · doi:10.1016/0550-3213(88)90110-1
[6] Giddings, SB; Strominger, A., Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B, 307, 854 (1988) · doi:10.1016/0550-3213(88)90109-5
[7] Abbott, LF; Wise, MB, Wormholes and Global Symmetries, Nucl. Phys. B, 325, 687 (1989) · doi:10.1016/0550-3213(89)90503-8
[8] Coleman, SR; Lee, K-M, Wormholes made without massless matter fields, Nucl. Phys. B, 329, 387 (1990) · doi:10.1016/0550-3213(90)90149-8
[9] Kallosh, R.; Linde, AD; Linde, DA; Susskind, L., Gravity and global symmetries, Phys. Rev. D, 52, 912 (1995) · doi:10.1103/PhysRevD.52.912
[10] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The String landscape, black holes and gravity as the weakest force, JHEP, 06, 060 (2007) · doi:10.1088/1126-6708/2007/06/060
[11] D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett.122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].
[12] Harlow, D.; Ooguri, H., Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys., 383, 1669 (2021) · Zbl 1472.81208 · doi:10.1007/s00220-021-04040-y
[13] D. Harlow and E. Shaghoulian, Global symmetry, Euclidean gravity, and the black hole information problem, JHEP04 (2021) 175 [arXiv:2010.10539] [INSPIRE]. · Zbl 1462.83016
[14] Fichet, S.; Saraswat, P., Approximate Symmetries and Gravity, JHEP, 01, 088 (2020) · Zbl 1434.83034 · doi:10.1007/JHEP01(2020)088
[15] Chen, Y.; Lin, HW, Signatures of global symmetry violation in relative entropies and replica wormholes, JHEP, 03, 040 (2021) · Zbl 1461.83016 · doi:10.1007/JHEP03(2021)040
[16] P.-S. Hsin, L.V. Iliesiu and Z. Yang, A violation of global symmetries from replica wormholes and the fate of black hole remnants, Class. Quant. Grav.38 (2021) 194004 [arXiv:2011.09444] [INSPIRE]. · Zbl 1479.83055
[17] A. Milekhin and A. Tajdini, Charge fluctuation entropy of Hawking radiation: a replica-free way to find large entropy, arXiv:2109.03841 [INSPIRE].
[18] A. Belin, J. De Boer, P. Nayak and J. Sonner, Charged eigenstate thermalization, Euclidean wormholes and global symmetries in quantum gravity, SciPost Phys.12 (2022) 059 [arXiv:2012.07875] [INSPIRE].
[19] T. Daus, A. Hebecker, S. Leonhardt and J. March-Russell, Towards a Swampland Global Symmetry Conjecture using weak gravity, Nucl. Phys. B960 (2020) 115167 [arXiv:2002.02456] [INSPIRE]. · Zbl 1475.83030
[20] M. Sasieta, Wormholes from heavy operator statistics in AdS/CFT, arXiv:2211.11794 [INSPIRE].
[21] Penington, G.; Shenker, SH; Stanford, D.; Yang, Z., Replica wormholes and the black hole interior, JHEP, 03, 205 (2022) · Zbl 1522.83227 · doi:10.1007/JHEP03(2022)205
[22] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
[23] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].
[24] Kontsevich, M.; Segal, G., Wick Rotation and the Positivity of Energy in Quantum Field Theory, Quart. J. Math. Oxford Ser., 72, 673 (2021) · Zbl 1471.81075 · doi:10.1093/qmath/haab027
[25] E. Witten, A Note On Complex Spacetime Metrics, arXiv:2111.06514 [INSPIRE].
[26] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B44S10 (1966) 1 [Erratum ibid.48 (1967) 463] [INSPIRE].
[27] Keranen, V., Gravitational collapse of thin shells: Time evolution of the holographic entanglement entropy, JHEP, 06, 126 (2015) · Zbl 1388.83278 · doi:10.1007/JHEP06(2015)126
[28] Bezrukov, F.; Levkov, D.; Sibiryakov, S., Semiclassical S-matrix for black holes, JHEP, 12, 002 (2015) · Zbl 1388.81938
[29] J. Chandra and T. Hartman, Coarse graining pure states in AdS/CFT, arXiv:2206.03414 [INSPIRE].
[30] V. Balasubramanian, A. Lawrence, J.M. Magan and M. Sasieta, Microscopic origin of the entropy of black holes in general relativity, arXiv:2212.02447 [INSPIRE].
[31] Parikh, MK; Wilczek, F., Hawking radiation as tunneling, Phys. Rev. Lett., 85, 5042 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[32] Mertens, TG; Turiaci, GJ; Verlinde, HL, Solving the Schwarzian via the Conformal Bootstrap, JHEP, 08, 136 (2017) · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[33] S.K. Blau, E.I. Guendelman and A.H. Guth, The Dynamics of False Vacuum Bubbles, Phys. Rev. D35 (1987) 1747 [INSPIRE].
[34] Dodelson, M.; Zhiboedov, A., Gravitational orbits, double-twist mirage, and many-body scars, JHEP, 12, 163 (2022) · Zbl 1536.83057 · doi:10.1007/JHEP12(2022)163
[35] Maldacena, JM; Maoz, L., Wormholes in AdS, JHEP, 02, 053 (2004) · doi:10.1088/1126-6708/2004/02/053
[36] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044 (2020) · Zbl 1454.83042 · doi:10.1007/JHEP08(2020)044
[37] J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [NST-ITP-99-02] [INSPIRE]. · Zbl 0662.58046
[38] Susskind, L., Holography in the flat space limit, AIP Conf. Proc., 493, 98 (1999) · Zbl 0973.83545
[39] Giddings, SB, The Boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett., 83, 2707 (1999) · Zbl 0958.81151 · doi:10.1103/PhysRevLett.83.2707
[40] Penedones, J., Writing CFT correlation functions as AdS scattering amplitudes, JHEP, 03, 025 (2011) · Zbl 1301.81154 · doi:10.1007/JHEP03(2011)025
[41] Maldacena, J.; Turiaci, GJ; Yang, Z., Two dimensional Nearly de Sitter gravity, JHEP, 01, 139 (2021) · Zbl 1459.83035 · doi:10.1007/JHEP01(2021)139
[42] E. Witten, Deformations of JT Gravity and Phase Transitions, arXiv:2006.03494 [INSPIRE].
[43] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The Black hole singularity in AdS / CFT, JHEP, 02, 014 (2004) · doi:10.1088/1126-6708/2004/02/014
[44] G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I., JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.