×

Approximate symmetries and gravity. (English) Zbl 1434.83034

Summary: There are strong reasons to believe that global symmetries of quantum theories cannot be exact in the presence of gravity. While this has been argued at the qualitative level, establishing a quantitative statement is more challenging. In this work we take new steps towards quantifying symmetry violation in EFTs with gravity. First, we evaluate global charge violation by microscopic black holes present in a thermal system, which represents an irreducible, universal effect at finite temperature. Second, based on general QFT considerations, we propose that local symmetry-violating processes should be faster than black hole-induced processes at any sub-Planckian temperature. Such a proposal can be seen as part of the “swampland” program to constrain EFTs emerging from quantum gravity. Considering an EFT perspective, we formulate a conjecture which requires the existence of operators violating global symmetry and places quantitative bounds on them. We study the interplay of our conjecture with emergent symmetries in QFT. In models where gauged U(1)’s enforce accidental symmetries, we find that constraints from the Weak Gravity Conjecture can ensure that our conjecture is satisfied. We also study the consistency of the conjecture with QFT models of emergent symmetries such as extradimensional localization, the Froggatt-Nielsen mechanism, and the clockwork mechanism.

MSC:

83C45 Quantization of the gravitational field
83C57 Black holes
81T10 Model quantum field theories

References:

[1] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
[2] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The string landscape, black holes and gravity as the weakest force, JHEP, 06, 060 (2007) · doi:10.1088/1126-6708/2007/06/060
[3] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE]. · Zbl 1472.81208
[4] Harlow, D.; Ooguri, H., Constraints on symmetries from holography, Phys. Rev. Lett., 122, 191601 (2019) · doi:10.1103/PhysRevLett.122.191601
[5] Giddings, Sb; Strominger, A., Axion induced topology change in quantum gravity and string theory, Nucl. Phys., B 306, 890 (1988) · doi:10.1016/0550-3213(88)90446-4
[6] Rey, S-J, The axion dynamics in wormhole background, Phys. Rev., D 39, 3185 (1989)
[7] Kallosh, R.; Linde, Ad; Linde, Da; Susskind, L., Gravity and global symmetries, Phys. Rev., D 52, 912 (1995)
[8] Alonso, R.; Urbano, A., Wormholes and masses for Goldstone bosons, JHEP, 02, 136 (2019) · Zbl 1411.83008 · doi:10.1007/JHEP02(2019)136
[9] Coleman, Sr, Black holes as red herrings: topological fluctuations and the loss of quantum coherence, Nucl. Phys., B 307, 867 (1988) · doi:10.1016/0550-3213(88)90110-1
[10] Giddings, Sb; Strominger, A., Loss of incoherence and determination of coupling constants in quantum gravity, Nucl. Phys., B 307, 854 (1988) · doi:10.1016/0550-3213(88)90109-5
[11] Abbott, Lf; Wise, Mb, Wormholes and global symmetries, Nucl. Phys., B 325, 687 (1989) · doi:10.1016/0550-3213(89)90503-8
[12] Coleman, Sr, Why there is nothing rather than something: a theory of the cosmological constant, Nucl. Phys., B 310, 643 (1988) · Zbl 0942.83510 · doi:10.1016/0550-3213(88)90097-1
[13] Hebecker, A.; Mikhail, T.; Soler, P., Euclidean wormholes, baby universes and their impact on particle physics and cosmology, Front. Astron. Space Sci., 5, 35 (2018) · doi:10.3389/fspas.2018.00035
[14] Rudelius, T., Constraints on axion inflation from the weak gravity conjecture, JCAP, 09, 020 (2015) · doi:10.1088/1475-7516/2015/09/020
[15] Brown, J.; Cottrell, W.; Shiu, G.; Soler, P., Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP, 10, 023 (2015) · Zbl 1388.83091 · doi:10.1007/JHEP10(2015)023
[16] Heidenreich, B.; Reece, M.; Rudelius, T., Weak gravity strongly constrains large-field axion inflation, JHEP, 12, 108 (2015) · Zbl 1388.81939
[17] Hebecker, A.; Henkenjohann, P., Gauge and gravitational instantons: from 3-forms and fermions to weak gravity and flat axion potentials, JHEP, 09, 038 (2019) · Zbl 1423.83014 · doi:10.1007/JHEP09(2019)038
[18] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[19] Ooguri, H.; Vafa, C., On the geometry of the string landscape and the swampland, Nucl. Phys., B 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[20] Palti, E., The swampland: introduction and review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[21] Cheung, C.; Remmen, Gn, Naturalness and the weak gravity conjecture, Phys. Rev. Lett., 113, 051601 (2014) · doi:10.1103/PhysRevLett.113.051601
[22] Heidenreich, B.; Reece, M.; Rudelius, T., Sharpening the weak gravity conjecture with dimensional reduction, JHEP, 02, 140 (2016) · Zbl 1388.83119 · doi:10.1007/JHEP02(2016)140
[23] Heidenreich, B.; Reece, M.; Rudelius, T., Evidence for a sublattice weak gravity conjecture, JHEP, 08, 025 (2017) · Zbl 1381.83065 · doi:10.1007/JHEP08(2017)025
[24] Andriolo, S.; Junghans, D.; Noumi, T.; Shiu, G., A tower weak gravity conjecture from infrared consistency, Fortsch. Phys., 66, 1800020 (2018) · Zbl 1535.81179 · doi:10.1002/prop.201800020
[25] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett.B 474 (2000) 361 [hep-ph/9912408] [INSPIRE]. · Zbl 1049.81671
[26] Froggatt, Cd; Nielsen, Hb, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys., B 147, 277 (1979) · doi:10.1016/0550-3213(79)90316-X
[27] G. Dvali, C. Gomez, R.S. Isermann, D. Lüst and S. Stieberger, Black hole formation and classicalization in ultra-Planckian 2 → N scattering, Nucl. Phys.B 893 (2015) 187 [arXiv:1409.7405] [INSPIRE]. · Zbl 1348.83047
[28] Dvali, G., Strong coupling and classicalization, Subnucl. Ser., 53, 189 (2017)
[29] Gross, Dj; Perry, Mj; Yaffe, Lg, Instability of flat space at finite temperature, Phys. Rev., D 25, 330 (1982) · Zbl 1267.83039
[30] Harrison, Er, Normal modes of vibrations of the universe, Rev. Mod. Phys., 39, 862 (1967) · doi:10.1103/RevModPhys.39.862
[31] Barrow, John D.; Ellis, George F. R.; Maartens, Roy; Tsagas, Christos G., On the stability of the Einstein static universe, Classical and Quantum Gravity, 20, 11, L155-L164 (2003) · Zbl 1026.83073 · doi:10.1088/0264-9381/20/11/102
[32] York, Jw Jr, Black hole thermodynamics and the Euclidean Einstein action, Phys. Rev., D 33, 2092 (1986) · Zbl 1058.83514
[33] T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].
[34] S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev.D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].
[35] S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett.87 (2001) 161602 [hep-ph/0106295] [INSPIRE].
[36] J.A. Conley and T. Wizansky, Microscopic primordial black holes and extra dimensions, Phys. Rev.D 75 (2007) 044006 [hep-ph/0611091] [INSPIRE].
[37] Borunda, M.; Masip, M., Black hole gas in the early universe, JCAP, 01, 027 (2010) · doi:10.1088/1475-7516/2010/01/027
[38] T. Nakama and J. Yokoyama, Micro black holes formed in the early universe and their cosmological implications, Phys. Rev.D 99 (2019) 061303 [arXiv:1811.05049] [INSPIRE].
[39] Piran, T.; Wald, Rm, Rate of black hole formation in a thermal box, Phys. Lett., A 90, 20 (1982) · doi:10.1016/0375-9601(82)90039-1
[40] Braden, Hw; Whiting, Bf; York, Jw Jr, Density of states for the gravitational field in black hole topologies, Phys. Rev., D 36, 3614 (1987)
[41] Unruh, Wg, Absorption cross-section of small black holes, Phys. Rev., D 14, 3251 (1976)
[42] Lee, S-J; Lerche, W.; Weigand, T., Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, JHEP, 08, 104 (2019) · Zbl 1421.81129 · doi:10.1007/JHEP08(2019)104
[43] P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev.D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].
[44] Dvali, G.; Redi, M.; Sibiryakov, S.; Vainshtein, A., Gravity cutoff in theories with large discrete symmetries, Phys. Rev. Lett., 101, 151603 (2008) · doi:10.1103/PhysRevLett.101.151603
[45] Dvali, G., Black holes and large N species solution to the hierarchy problem, Fortsch. Phys., 58, 528 (2010) · Zbl 1196.81258 · doi:10.1002/prop.201000009
[46] Craig, N.; Garcia Garcia, I.; Koren, S., Discrete gauge symmetries and the weak gravity conjecture, JHEP, 05, 140 (2019) · Zbl 1416.83013 · doi:10.1007/JHEP05(2019)140
[47] K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev.D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].
[48] Higaki, T.; Takahashi, F., Natural and multi-natural inflation in axion landscape, JHEP, 07, 074 (2014) · doi:10.1007/JHEP07(2014)074
[49] Choi, K.; Im, Sh, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP, 01, 149 (2016) · Zbl 1388.81796 · doi:10.1007/JHEP01(2016)149
[50] D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev.D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
[51] Graham, Pw; Kaplan, De; Rajendran, S., Cosmological relaxation of the electroweak scale, Phys. Rev. Lett., 115, 221801 (2015) · doi:10.1103/PhysRevLett.115.221801
[52] G.R. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Scales of gravity, Phys. Rev.D 65 (2002) 024031 [hep-th/0106058] [INSPIRE].
[53] Veneziano, G., Large N bounds on and compositeness limit of, gauge and gravitational interactions, JHEP, 06, 051 (2002) · doi:10.1088/1126-6708/2002/06/051
[54] G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev.D 77 (2008) 045027 [arXiv:0710.4344] [INSPIRE].
[55] Fichet, S.; Von Gersdorff, G., Anomalous gauge couplings from composite Higgs and warped extra dimensions, JHEP, 03, 102 (2014) · doi:10.1007/JHEP03(2014)102
[56] Goldberger, Wd; Rothstein, Iz, High-energy field theory in truncated AdS backgrounds, Phys. Rev. Lett., 89, 131601 (2002) · Zbl 1267.83046 · doi:10.1103/PhysRevLett.89.131601
[57] S. Fichet, Opacity and effective field theory in anti-de Sitter backgrounds, Phys. Rev.D 100 (2019) 095002 [arXiv:1905.05779] [INSPIRE].
[58] Creminelli, P.; Nicolis, A.; Rattazzi, R., Holography and the electroweak phase transition, JHEP, 03, 051 (2002) · doi:10.1088/1126-6708/2002/03/051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.