×

On Landauer-Büttiker formalism from a quantum quench. (English) Zbl 07682025

Summary: We study transport in the free fermionic one-dimensional systems subjected to arbitrary local potentials. The bias needed for the transport is modeled by the initial highly non-equilibrium distribution where only half of the system is populated. Additionally to that, the local potential is also suddenly changed when the transport starts. For such a quench protocol we compute the full counting statistics (FCS) of the number of particles in the initially empty part. In the thermodynamic limit, the FCS can be expressed via the Fredholm determinant with the kernel depending on the scattering data and Jost solutions of the pre-quench and the post-quench potentials. We discuss the large-time asymptotic behavior of the obtained determinant and observe that if two or more bound states are present in the spectrum of the post-quench potential the information about the initial state manifests itself in the persistent oscillations of the FCS. On the contrary, when there are no bound states the asymptotic behavior of the FCS is determined solely by the scattering data of the post-quench potential, which for the current (the first moment) is given by the Landauer-Büttiker formalism. The information about the initial state can be observed only in the transient dynamics.

References:

[1] Landauer, R., IBM J. Res. Dev., 1, 223-31 (1957) · doi:10.1147/rd.13.0223
[2] Landauer, R., Phil. Mag. A, 21, 863-7 (1970) · doi:10.1080/14786437008238472
[3] Büttiker, M., Phys. Rev. Lett., 57, 1761-4 (1986) · doi:10.1103/PhysRevLett.57.1761
[4] Landauer, R., Phys. Scr., T42, 110-4 (1992) · doi:10.1088/0031-8949/1992/T42/020
[5] Imry, Y.; Landauer, R., Rev. Mod. Phys., 71, S306-12 (1999) · doi:10.1103/RevModPhys.71.S306
[6] Economou, E. N.; Soukoulis, C. M., Phys. Rev. Lett., 46, 618-21 (1981) · doi:10.1103/PhysRevLett.46.618
[7] Fisher, D. S.; Lee, P. A., Phys. Rev. B, 23, 6851-4 (1981) · doi:10.1103/PhysRevB.23.6851
[8] Anderson, P. W.; Thouless, D. J.; Abrahams, E.; Fisher, D. S., Phys. Rev. B, 22, 3519-26 (1980) · doi:10.1103/PhysRevB.22.3519
[9] Thouless, D. J., Phys. Rev. Lett., 47, 972-972 (1981) · doi:10.1103/PhysRevLett.47.972
[10] Langreth, D. C.; Abrahams, E., Phys. Rev. B, 24, 2978-84 (1981) · doi:10.1103/PhysRevB.24.2978
[11] Engquist, H-L; Anderson, P. W., Phys. Rev. B, 24, 1151-4 (1981) · doi:10.1103/PhysRevB.24.1151
[12] Stone, A. D.; Szafer, A., IBM J. Res. Dev., 32, 384-413 (1988) · doi:10.1147/rd.323.0384
[13] Caroli, C.; Combescot, R.; Nozieres, P.; Saint-James, D., J. Phys. C: Solid State Phys., 4, 916-29 (1971) · doi:10.1088/0022-3719/4/8/018
[14] Cini, M., Phys. Rev. B, 22, 5887-99 (1980) · doi:10.1103/PhysRevB.22.5887
[15] Stefanucci, G.; Almbladh, C-O, Europhys. Lett., 67, 14-20 (2004) · doi:10.1209/epl/i2004-10043-7
[16] Stefanucci, G.; Almbladh, C-O, Phys. Rev. B, 69 (2004) · doi:10.1103/PhysRevB.69.195318
[17] Kohler, S.; Lehmann, J.; Hanggi, P., Phys. Rep., 406, 379-443 (2005) · doi:10.1016/j.physrep.2004.11.002
[18] Ridley, M.; Talarico, N. W.; Karlsson, D.; Gullo, N. L.; Tuovinen, R., J. Phys. A: Math. Theor., 55 (2022) · Zbl 1507.81200 · doi:10.1088/1751-8121/ac7119
[19] Gaury, B.; Waintal, X., Physica E, 75, 72-76 (2016) · doi:10.1016/j.physe.2015.09.009
[20] Weston, J.; Waintal, X., Phys. Rev. B, 93 (2016) · doi:10.1103/PhysRevB.93.134506
[21] Kloss, T.; Weston, J.; Gaury, B.; Rossignol, B.; Groth, C.; Waintal, X., New J. Phys., 23 (2021) · doi:10.1088/1367-2630/abddf7
[22] Moskalets, M.; Büttiker, M., Phys. Rev. B, 66 (2002) · doi:10.1103/PhysRevB.66.205320
[23] Moskalets, M. V., Scattering Matrix Approach to Non-Stationary Quantum Transport (2011), London: Imperial College Press, London
[24] Gamayun, O.; Slobodeniuk, A.; Caux, J-S; Lychkovskiy, O., Phys. Rev. B, 103 (2021) · doi:10.1103/PhysRevB.103.L041405
[25] Calabrese, P.; Cardy, J., J. Stat. Mech., 2007 (2007) · doi:10.1088/1742-5468/2007/10/P10004
[26] Sotiriadis, S.; Cardy, J., J. Stat. Mech., 2008 (2008) · doi:10.1088/1742-5468/2008/11/P11003
[27] Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M., Rev. Mod. Phys., 83, 863 (2011) · doi:10.1103/RevModPhys.83.863
[28] Calabrese, P.; Essler, F. H L.; Mussardo, G., J. Stat. Mech., 2016 (2016) · doi:10.1088/1742-5468/2016/06/064001
[29] Eisert, J.; Friesdorf, M.; Gogolin, C., Nat. Phys., 11, 124-30 (2015) · doi:10.1038/nphys3215
[30] Bertini, B.; Collura, M.; Nardis, J. D.; Fagotti, M., Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.207201
[31] Castro-Alvaredo, O. A.; Doyon, B.; Yoshimura, T., Phys. Rev. X, 6 (2016) · doi:10.1103/PhysRevX.6.041065
[32] Bastianello, A.; Bertini, B.; Doyon, B.; Vasseur, R., J. Stat. Mech., 2022 (2022) · doi:10.1088/1742-5468/ac3e6a
[33] Antal, T.; Rácz, Z.; Rákos, A.; Schütz, G. M., Phys. Rev. E, 59, 4912-8 (1999) · doi:10.1103/PhysRevE.59.4912
[34] Antal, T.; Krapivsky, P. L.; Rákos, A., Phys. Rev. E, 78 (2008) · doi:10.1103/PhysRevE.78.061115
[35] Lancaster, J.; Mitra, A., Phys. Rev. E, 81 (2010) · doi:10.1103/PhysRevE.81.061134
[36] Viti, J.; Stéphan, J-M; Dubail, J.; Haque, M., Europhys. Lett., 115 (2016) · doi:10.1209/0295-5075/115/40011
[37] Chien, C-C; Di Ventra, M.; Zwolak, M., Phys. Rev. A, 90 (2014) · doi:10.1103/PhysRevA.90.023624
[38] Perfetto, G.; Gambassi, A., Phys. Rev. E, 96 (2017) · doi:10.1103/PhysRevE.96.012138
[39] Jin, T.; Gautié, T.; Krajenbrink, A.; Ruggiero, P.; Yoshimura, T., J. Phys. A: Math. Theor., 54 (2021) · Zbl 1519.81527 · doi:10.1088/1751-8121/ac20ef
[40] Stéphan, J. M., J. Stat. Mech., 2017 (2017) · Zbl 1457.82047 · doi:10.1088/1742-5468/aa8c19
[41] Eisler, V.; Rácz, Z., Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.060602
[42] Moriya, H.; Nagao, R.; Sasamoto, T., J. Stat. Mech., 2019 (2019) · doi:10.1088/1742-5468/ab1dd6
[43] Dean, D. S.; Doussal, P. L.; Majumdar, S. N.; Schehr, G., J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.81635 · doi:10.1088/1751-8121/ab098d
[44] Eisler, V.; Iglói, F.; Peschel, I., J. Stat. Mech., 2009 (2009) · Zbl 1456.82122 · doi:10.1088/1742-5468/2009/02/P02011
[45] Eisler, V.; Peschel, I., Europhys. Lett., 99 (2012) · doi:10.1209/0295-5075/99/20001
[46] Dubail, J.; Stéphan, J. M.; Viti, J.; Calabrese, P., SciPost Phys., 2, 002 (2017) · doi:10.21468/SciPostPhys.2.1.002
[47] Branschädel, A.; Schneider, G.; Schmitteckert, P., Ann. Phys., Lpz., 522, 657-78 (2010) · doi:10.1002/andp.201000017
[48] Branschädel, A.; Boulat, E.; Saleur, H.; Schmitteckert, P., Phys. Rev. B, 82 (2010) · doi:10.1103/PhysRevB.82.205414
[49] Bidzhiev, K.; Misguich, G., Phys. Rev. B, 96 (2017) · doi:10.1103/PhysRevB.96.195117
[50] Bidzhiev, K.; Misguich, G.; Saleur, H. (2018)
[51] Mazza, P. P.; Perfetto, G.; Lerose, A.; Collura, M.; Gambassi, A., Phys. Rev. B, 99 (2019) · doi:10.1103/PhysRevB.99.180302
[52] Bertini, B.; Fagotti, M., Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.130402
[53] Vecchio, G. D V. D.; Luca, A. D.; Bastianello, A., SciPost Phys., 12, 60 (2022) · doi:10.21468/SciPostPhys.12.2.060
[54] Rossi, L.; Dolcini, F.; Cavaliere, F.; Ziani, N. T.; Sassetti, M.; Rossi, F., Entropy, 23, 220 (2021) · doi:10.3390/e23020220
[55] Ljubotina, M.; Sotiriadis, S.; Prosen, T., SciPost Phys., 6, 4 (2019) · doi:10.21468/SciPostPhys.6.1.004
[56] Gamayun, O.; Lychkovskiy, O.; Caux, J. S., SciPost Phys., 8, 036 (2020) · doi:10.21468/SciPostPhys.8.3.036
[57] Gouraud, G.; Doussal, P. L.; Schehr, G., Quench dynamics of noninteracting fermions with a delta impurity (2022)
[58] Levitov, L. S.; Lesovik, G. B., Charge distribution in quantum shot noise, JETP Lett., 58, 225 (1993)
[59] Levitov, L. S.; Lee, H.; Lesovik, G. B., J. Math. Phys., 37, 4845-66 (1996) · Zbl 0868.60099 · doi:10.1063/1.531672
[60] Schönhammer, K., Phys. Rev. B, 75 (2007) · doi:10.1103/PhysRevB.75.205329
[61] Khosravi, E.; Kurth, S.; Stefanucci, G.; Gross, E. K U., Appl. Phys. A, 93, 355-64 (2008) · doi:10.1007/s00339-008-4864-9
[62] Yang, P-Y; Lin, C-Y; Zhang, W-M, Phys. Rev. B, 92 (2015) · doi:10.1103/PhysRevB.92.165403
[63] Büttiker, M., Phys. Rev. B, 46, 12485-507 (1992) · doi:10.1103/PhysRevB.46.12485
[64] Newton, R. G., Scattering Theory of Waves and Particles (1982), Berlin: Springer, Berlin · Zbl 0496.47011
[65] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons, the Inverse Scattering Method (1984), New York: Consultants Bureau, New York · Zbl 0598.35002
[66] Kitanine, N.; Kozlowski, K. K.; Maillet, J. M.; Slavnov, N. A.; Terras, V., Commun. Math. Phys., 291, 691-761 (2009) · Zbl 1189.45018 · doi:10.1007/s00220-009-0878-1
[67] Slavnov, N. A., Theor. Math. Phys., 165, 1262-74 (2010) · Zbl 1254.45013 · doi:10.1007/s11232-010-0108-1
[68] Kozlowski, K. K., Adv. Theor. Math. phys., 15, 1655-743 (2011) · Zbl 1271.82015 · doi:10.4310/ATMP.2011.v15.n6.a3
[69] Gamayun, O.; Iorgov, N.; Zhuravlev, Y., SciPost Phys., 10, 70 (2021) · doi:10.21468/SciPostPhys.10.3.070
[70] Chernowitz, D.; Gamayun, O., SciPost Phys. Core, 5, 6 (2022) · doi:10.21468/SciPostPhysCore.5.1.006
[71] Zhuravlev, Y.; Naichuk, E.; Iorgov, N.; Gamayun, O., Phys. Rev. B, 105 (2022) · doi:10.1103/PhysRevB.105.085145
[72] Esposito, M.; Harbola, U.; Mukamel, S., Rev. Mod. Phys., 81, 1665-702 (2009) · Zbl 1205.82097 · doi:10.1103/RevModPhys.81.1665
[73] Doyon, B.; Myers, J., Anna. Henri Poincaré, 21, 255-302 (2019) · Zbl 1434.82043 · doi:10.1007/s00023-019-00860-w
[74] Gutman, D. B.; Gefen, Y.; Mirlin, A. D., Phys. Rev. B, 81 (2010) · doi:10.1103/PhysRevB.81.085436
[75] Gutman, D. B.; Gefen, Y.; Mirlin, A. D., J. Phys. A: Math. Theor., 44 (2011) · Zbl 1251.82032 · doi:10.1088/1751-8113/44/16/165003
[76] Klich, I.; Levitov, L., Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.100502
[77] Klich, I.; Levitov, L., AIP Conf. Proc., 1134, 36-45 (2009) · doi:10.1063/1.3149497
[78] Song, H. F.; Flindt, C.; Rachel, S.; Klich, I.; Hur, K. L., Phys. Rev. B, 83 (2011) · doi:10.1103/PhysRevB.83.161408
[79] Song, H. F.; Rachel, S.; Flindt, C.; Klich, I.; Laflorencie, N.; Hur, K. L., Phys. Rev. B, 85 (2012) · doi:10.1103/PhysRevB.85.035409
[80] Calabrese, P.; Cardy, J., J. Stat. Mech., 2005 (2005) · Zbl 1456.82578 · doi:10.1088/1742-5468/2005/04/P04010
[81] Alba, V.; Calabrese, P., Proc. Natl Acad. Sci., 114, 7947-51 (2017) · Zbl 1404.82033 · doi:10.1073/pnas.1703516114
[82] Calabrese, P.; Cardy, J., J. Phys. A: Math. Theor., 42 (2009) · Zbl 1179.81026 · doi:10.1088/1751-8113/42/50/504005
[83] Peschel, I.; Eisler, V., J. Phys. A: Math. Theor., 42 (2009) · Zbl 1179.81032 · doi:10.1088/1751-8113/42/50/504003
[84] Deift, P. A.; Its, A. R.; Zhou, X., Anna. Math., 146, 149 (1997) · Zbl 0936.47028 · doi:10.2307/2951834
[85] Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G., Quantum Inverse Scattering Method and Correlation Functions (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0787.47006
[86] Imry, Y., Introduction to Mesoscopic Physics, Mesoscopic Physics and Nanotechnology (1996), New York: Oxford University Press, New York
[87] van Wees, B. J.; van Houten, H.; Beenakker, C. W J.; Williamson, J. G.; Kouwenhoven, L. P.; van der Marel, D.; Foxon, C. T., Phys. Rev. Lett., 60, 848-50 (1988) · doi:10.1103/PhysRevLett.60.848
[88] Imry, Y., Phys. Rev. X, 8 (2018)
[89] Meir, Y.; Wingreen, N. S., Phys. Rev. Lett., 68, 2512-5 (1992) · doi:10.1103/PhysRevLett.68.2512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.