×

Time-discretization approximation enriches continuous-time discrete-space models for animal movement. (English) Zbl 07656996

Summary: Continuous time discrete state models are a valuable tool for explaining animal movement. However, data collection to fit such models over a specified window of time can be misaligned with the actual realization of the movement process. This necessitates approximate model fitting, at present, through approximate imputation distributions (AIDs). Here, we propose a direct time-discretization approximation to the likelihood. The approach employs familiar ideas from hidden Markov modeling. Computation is implemented through the induced infinitesimal generator matrix. Linearization of this matrix expedites computation time. Through simulation and a real data application involving whale movement, we demonstrate that this model fitting strategy can outperform AID approaches.

MSC:

62Pxx Applications of statistics
Full Text: DOI

References:

[1] AL-MOHY, A. H. and HIGHAM, N. J. (2009). A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31 970-989. · Zbl 1194.15021 · doi:10.1137/09074721X
[2] ALBERTSEN, C. M. (2019). Generalizing the first-difference correlated random walk for marine animal movement data. Sci. Rep. 9 4017. · doi:10.1038/s41598-019-40405-z
[3] ALBERTSEN, C. M., STØTTRUP, J. G., NIELSEN, A. and CHRISTOFFERSEN, M. O. (2014). Depth preference in released juvenile turbot Psetta maxima. Journal of Experimental Marine Biology and Ecology 461 179-184.
[4] Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Stat. Comput. 18 343-373. · doi:10.1007/s11222-008-9110-y
[5] BARLOW, J., SCHORR, G. S., FALCONE, E. A. and MORETTI, D. (2020). Variation in dive behavior of Cuvier’s beaked whales with seafloor depth, time-of-day, and lunar illumination. Mar. Ecol. Prog. Ser. 644 199-214.
[6] BECKER, J., SANDWELL, D., SMITH, W., BRAUD, J., BINDER, B., DEPNER, J., FABRE, D., FACTOR, J., INGALLS, S. et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy 32 355-371.
[7] BRENNAN, A., HANKS, E. M., MERKLE, J. A., COLE, E. K., DEWEY, S. R., COURTEMANCH, A. B. and CROSS, P. C. (2018). Examining speed versus selection in connectivity models using elk migration as an example. Landsc. Ecol. 33 955-968.
[8] BRILLINGER, D. R. (2003). Simulating constrained animal motion using stochastic differential equations. In Probability, Statistics and Their Applications: Papers in Honor of Rabi Bhattacharya. Institute of Mathematical Statistics Lecture Notes—Monograph Series 41 35-48. IMS, Beachwood, OH. · Zbl 1042.92042 · doi:10.1214/lnms/1215091656
[9] BUDERMAN, F. E., HOOTEN, M. B., ALLDREDGE, M. W., HANKS, E. M. and IVAN, J. S. (2018). Time-varying predatory behavior is primary predictor of fine-scale movement of wildland-urban cougars. Mov. Ecol. 6 1-16.
[10] DOUCET, A. and JOHANSEN, A. M. (2011). A tutorial on particle filtering and smoothing: Fifteen years later. In The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.) 656-704. Oxford Univ. Press, Oxford. · Zbl 1513.60043
[11] DOYTCHINOV, B. and IRBY, R. (2010). Time discretization of Markov chains. Pi Mu Epsilon Journal 13 69-82.
[12] GRAMACY, R. B. (2020). Surrogates—Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. Chapman & Hall/CRC Texts in Statistical Science Series. CRC Press, Boca Raton, FL.
[13] HAMILTON, J. D. (1994). Time Series Analysis. Princeton Univ. Press, Princeton, NJ. · Zbl 0831.62061
[14] Hanks, E. M., Hooten, M. B. and Alldredge, M. W. (2015). Continuous-time discrete-space models for animal movement. Ann. Appl. Stat. 9 145-165. · Zbl 1454.62445 · doi:10.1214/14-AOAS803
[15] HANKS, E. M., JOHNSON, D. S. and HOOTEN, M. B. (2017). Reflected stochastic differential equation models for constrained animal movement. J. Agric. Biol. Environ. Stat. 22 353-372. · Zbl 1388.62342 · doi:10.1007/s13253-017-0291-8
[16] HARRIS, C. M., THOMAS, L., FALCONE, E. A., HILDEBRAND, J., HOUSER, D., KVADSHEIM, P. H., LAM, F.-P. A., MILLER, P. J. O., MORETTI, D. J. et al. (2018). Marine mammals and sonar: Dose-response studies, the risk-disturbance hypothesis and the role of exposure context. J. Appl. Ecol. 55 396-404.
[17] HEWITT, J., GELFAND, A. E. and SCHICK, R. S. (2023). Supplement to “Time-discretization approximation enriches continuous-time discrete-space models for animal movement.” https://doi.org/10.1214/22-AOAS1649SUPPA, https://doi.org/10.1214/22-AOAS1649SUPPB
[18] Johnson, D. S., London, J. M., Lea, M.-A. and Durban, J. W. (2008). Continuous-time correlated random walk model for animal telemetry data. Ecology 89 1208-1215.
[19] LOPEZ, R. and MALARDÉ, J. (2011). Improving ARGOS Doppler location using Kalman filtering. CLS Group CLS-DT-MEMO-11-65.
[20] LOPEZ, R., MALARDÉ, J.-P., ROYER, F. and GASPAR, P. (2013). Improving Argos Doppler location using multiple-model Kalman filtering. IEEE Trans. Geosci. Remote Sens. 52 4744-4755.
[21] MCCLINTOCK, B. T., LONDON, J. M., CAMERON, M. F. and BOVENG, P. L. (2015). Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol. Evol. 6 266-277.
[22] MEWS, S., LANGROCK, R., ÖTTING, M., YAQINE, H. and REINECKE, J. (2022). Maximum approximate likelihood estimation of general continuous-time state-space models. Stat. Model..
[23] MICHELOT, T., GLENNIE, R., HARRIS, C. and THOMAS, L. (2021). Varying-coefficient stochastic differential equations with applications in ecology. J. Agric. Biol. Environ. Stat. 26 446-463. · Zbl 07603075 · doi:10.1007/s13253-021-00450-6
[24] MICHELOT, T., GLOAGUEN, P., BLACKWELL, P. G. and ÉTIENNE, M.-P. (2019). The Langevin diffusion as a continuous-time model of animal movement and habitat selection. Methods Ecol. Evol. 10 1894-1907.
[25] PHILLIPS, R., SILK, J., CROXALL, J., AFANASYEV, V. and BRIGGS, D. (2004). Accuracy of geolocation estimates for flying seabirds. Mar. Ecol. Prog. Ser. 266 265-272.
[26] PREISLER, H. K., AGER, A. A. and WISDOM, M. J. (2013). Analyzing animal movement patterns using potential functions. Ecosphere 4 1-13.
[27] QUICK, N. J., CIOFFI, W. R., SHEARER, J. and READ, A. J. (2019). Mind the gap—optimizing satellite tag settings for time series analysis of foraging dives in Cuvier’s beaked whales (ziphius cavirostris). Anim. Biotelem. 7 5.
[28] RAO, V. and TEH, Y. W. (2013). Fast MCMC sampling for Markov jump processes and extensions. J. Mach. Learn. Res. 14 3295-3320. · Zbl 1318.60078
[29] ROYER, F., FROMENTIN, J.-M. and GASPAR, P. (2005). A state-space model to derive bluefin tuna movement and habitat from archival tags. Oikos 109 473-484.
[30] Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York. · Zbl 0665.62004 · doi:10.1002/9780470316696
[31] RUSSELL, J. C., HANKS, E. M., HARAN, M. and HUGHES, D. (2018). A spatially varying stochastic differential equation model for animal movement. Ann. Appl. Stat. 12 1312-1331. · Zbl 1405.62201 · doi:10.1214/17-AOAS1113
[32] SANTOS, M. B., PIERCE, G. J., HERMAN, J., LÓPEZ, A., GUERRA, A., MENTE, E. and CLARKE, M. (2001). Feeding ecology of Cuvier’s beaked whale (Ziphius cavirostris): A review with new information on the diet of this species. Journal of the Marine Biological Association of the United Kingdom 81 687-694.
[33] Scharf, H., Hooten, M. B. and Johnson, D. S. (2017). Imputation approaches for animal movement modeling. J. Agric. Biol. Environ. Stat. 22 335-352. · Zbl 1388.62351 · doi:10.1007/s13253-017-0294-5
[34] SCHICK, R. S., BOWERS, M., DERUITER, S., FRIEDLAENDER, A., JOSEPH, J., MARGOLINA, T., NOWACEK, D. P. and SOUTHAL, B. L. (2019). Accounting for positional uncertainty when modeling received levels for tagged cetaceans exposed to sonar. Aquatic Mammals 45 675-690.
[35] SHEARER, J. M., QUICK, N. J., CIOFFI, W. R., BAIRD, R. W., WEBSTER, D. L., FOLEY, H. J., SWAIM, Z. T., WAPLES, D. M., BELL, J. T. et al. (2019). Diving behaviour of Cuvier’s beaked whales (. R. Soc. Open Sci. 6 181728. · doi:10.1098/rsos.181728
[36] SOUTHALL, B. L., BENOIT-BIRD, K. J., MOLINE, M. A. and MORETTI, D. (2019). Quantifying deep-sea predator-prey dynamics: Implications of biological heterogeneity for beaked whale conservation. J. Appl. Ecol. 56 1040-1049.
[37] THORSON, J. T., BARBEAUX, S. J., GOETHEL, D. R., KEARNEY, K. A., LAMAN, E. A., NIELSEN, J. K., SISKEY, M. R., SIWICKE, K. and THOMPSON, G. G. (2021). Estimating fine-scale movement rates and habitat preferences using multiple data sources. Fish and Fisheries 22 1359-1376.
[38] THYGESEN, U. H., PEDERSEN, M. W. and MADSEN, H. (2009). Geolocating fish using hidden Markov models and data storage tags. In Tagging and Tracking of Marine Animals with Electronic Devices 277-293. Springer, Berlin.
[39] TYACK, P. L., JOHNSON, M., SOTO, N. A., STURLESE, A. and MADSEN, P. T. (2006). Extreme diving of beaked whales. Journal of Experimental Biology 209 4238-4253.
[40] WENSVEEN, P. J., ISOJUNNO, S., HANSEN, R. R., VON BENDA-BECKMANN, A. M., KLEIVANE, L., VAN IJSSELMUIDE, S., LAM FRANS-PETER, A., KVADSHEIM, P. H., DERUITER, S. L. et al. (2019). Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals. Proc. R. Soc. Lond., B Biol. Sci. 286 20182592.
[41] YIN, G. G. and ZHANG, Q. (2013). Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, 2nd ed. Stochastic Modelling and Applied Probability 37. Springer, New York · Zbl 1277.60127 · doi:10.1007/978-1-4614-4346-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.