Skip to main content
Log in

Reflected Stochastic Differential Equation Models for Constrained Animal Movement

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowitz, M., and Stegun, I. A., eds (2012), Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Mineola, NY: Dover Publications.

    MATH  Google Scholar 

  • Allen, E. (2007), Modeling with Itô Stochastic Differential Equations, Vol. 22, New York, NY: Springer Science & Business Media.

    MATH  Google Scholar 

  • Andrieu, C., Doucet, A., and Holenstein, R. (2010), “Particle Markov Chain Monte Carlo Methods,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269–342.

    Article  MathSciNet  MATH  Google Scholar 

  • ARGOS (2015), “ARGOS User’s Manual,”, http://www.argos-system.org.

  • Avgar, T., Potts, J. R., Lewis, M. A., and Boyce, M. S. (2016), “Integrated Step Selection Analysis: Bridging the Gap between Resource Selection and Animal Movement,” Methods in Ecology and Evolution, 7, 619–630.

    Article  Google Scholar 

  • Bjørge, A., Bekkby, T., and Bryant, E. (2002), “Summer Home Range and Habitat Selection of Harbor Seal (Phoca Vitulina) Pups,” Marine Mammal Science, 18(2), 438–454.

    Article  Google Scholar 

  • Brillinger, D., Preisler, H., Ager, A., and Kie, J. (2001), “The Use of Potential Functions in Modeling Animal Movement,” in Data Analysis from Statistical Foundations, ed. A. K. Salah, New York, NY: Nova Publishers, pp. 369–386.

    Google Scholar 

  • Brillinger, D. R. (2003), “Simulating Constrained Animal Motion Using Stochastic Differential Equations,” Lecture Notes-Monograph Series, pp. 35–48.

  • Brillinger, D. R., Preisler, H. K., Ager, A. A., Kie, J. G., and Stewart, B. S. (2002), “Employing Stochastic Differential Equations to Model Wildlife Motion,” Bulletin of the Brazilian Mathematical Society, 33(3), 385–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Brost, B. M., Hooten, M. B., Hanks, E. M., and Small, R. J. (2015), “Animal Movement Constraints Improve Resource Selection Inference in the Presence of Telemetry Error,” Ecology, 96(10), 2590–2597.

    Article  PubMed  Google Scholar 

  • Buderman, F. E., Hooten, M. B., Ivan, J. S., and Shenk, T. M. (2016), “A Functional Model for Characterizing Long-Distance Movement Behaviour,” Methods in Ecology and Evolution, 7(3), 264–273.

    Article  Google Scholar 

  • Cangelosi, A. R., and Hooten, M. B. (2009), “Models for Bounded Systems with Continuous Dynamics,” Biometrics, 65(3), 850–6.

    Article  MathSciNet  MATH  Google Scholar 

  • Cappé, O. (2005), Inference in Hidden Markov Models, New York, NY: Springer Science+Business Media, LLC.

    MATH  Google Scholar 

  • Cappé, O., Godsill, S. J., and Moulines, E. (2007), “An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo,” Proceedings of the IEEE, 95(5), 899–924.

    Article  Google Scholar 

  • Costa, D. P., Robinson, P. W., Arnould, J. P. Y., Harrison, A.-L., Simmons, S. E., Hassrick, J. L., Hoskins, A. J., Kirkman, S. P., Oosthuizen, H., Villegas-Amtmann, S., and Crocker, D. E. (2010), “Accuracy of ARGOS Locations of Pinnipeds At-Sea Estimated Using Fastloc GPS,” PloS one, 5(1), e8677–e8677.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Coulon, a., Guillot, G., Cosson, J.-F., a Angibault, J. M., Aulagnier, S., Cargnelutti, B., Galan, M., and Hewison, a. J. M. (2006), “Genetic Structure Is Influenced by Landscape Features: Empirical Evidence from a Roe Deer Population,” Molecular ecology, 15(6), 1669–79.

    Article  Google Scholar 

  • Craiu, R. V., and Rosenthal, J. S. (2014), “Bayesian Computation Via Markov Chain Monte Carlo,” Annual Review of Statistics and Its Application, 1(1), 179–201.

    Article  ADS  Google Scholar 

  • Cressie, N., and Wikle, C. (2011), Statistics for Spatio-Temporal Data, Vol. 465, New York, NY: Wiley.

    MATH  Google Scholar 

  • Dalton, R. (2005), “Conservation Biology: Is This Any Way to Save a Species?,” Nature, 436(7047), 14–16.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dangerfield, C. E., Kay, D., and Burrage, K. (2012), “Modeling Ion Channel Dynamics through Reflected Stochastic Differential Equations,” Physical Review E, 85(5), 051907.

    Article  ADS  Google Scholar 

  • Del Moral, P., Doucet, A., and Jasra, A. (2006), “Sequential Monte Carlo Samplers,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), 411–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Genz, A., and Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities, Vol. 195 of Lecture Notes in Statistics, Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Grebenkov, D. S. (2007), “NMR Survey of Reflected Brownian Motion,” Reviews of Modern Physics, 79(3), 1077–1137.

    Article  ADS  CAS  Google Scholar 

  • Hanks, E., Hooten, M., Johnson, D., and Sterling, J. (2011), “Velocity-Based Movement Modeling for Individual and Population Level Inference,” PLoS ONE, 6(8), e22795–e22795.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks, E. M., and Hooten, M. B. (2013), “Circuit Theory and Model-Based Inference for Landscape Connectivity,” Journal of the American Statistical Association, 108, 22–33.

    Article  MathSciNet  CAS  MATH  Google Scholar 

  • Hanks, E. M., Hooten, M. B., and Alldredge, M. W. (2015), “Continuous-Time Discrete-Space Models For Animal Movement,” The Annals of Applied Statistics, 9(1), 145–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Hooten, M. B., and Johnson, D. S. (2017), “Basis Function Models for Animal Movement,” Journal of the American Statistical Association, In Press.

  • Hooten, M. B., Johnson, D. S., Hanks, E. M., and Lowry, J. H. (2010), “Agent-Based Inference for Animal Movement and Selection,” Journal of Agricultural, Biological, and Environmental Statistics, 15(4), 523–538.

    Article  MathSciNet  MATH  Google Scholar 

  • Hooten, M. B., Johnson, D. S., McClintock, B. T., and Morales, J. M. (2017), Animal Movement: Statistical Models for Telemetry Data, Boca Raton: CRC Press.

    Book  Google Scholar 

  • Hooten, M. B., Wikle, C. K., Dorazio, R. M., and Royle, J. A. (2007), “Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions,” Biometrics, 63(2), 558–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, D., London, J., Lea, M., and Durban, J. (2008), “Continuous-Time Correlated Random Walk Model for Animal Telemetry Data,” Ecology, 89(5), 1208–1215.

    Article  PubMed  Google Scholar 

  • Johnson, D. S., Thomas, D. L., Ver Hoef, J. M., and Christ, A. (2008), “A General Framework for the Analysis of Animal Resource Selection from Telemetry Data,” Biometrics, 64(3), 968–976.

    Article  MathSciNet  PubMed  MATH  Google Scholar 

  • Kantas, N., Doucet, A., Singh, S. S., and Maciejowski, J. M. (2009), An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models, in Proceedings of the 15th IFAC Symposium on System Identification, Vol. 102, pp. 117–117.

  • Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2016), “Understanding the Ensemble Kalman Filter,” The American Statistician, 70(4), 350–357.

  • Kloeden, P. E., and Platen, E. (1992), Numerical Solution of Stochastic Differential Equations, Vol. 23, New York, NY: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  • Lépingle, D. (1995), “Euler Scheme for Reflected Stochastic Differential Equations,” Mathematics and Computers in Simulation, 38(1), 119–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Mersch, D. P., Crespi, A., and Keller, L. (2013), “Tracking Individuals Shows Spatial Fidelity Is a Key Regulator of Ant Social Organization,” Science, 340(6136), 1090–1093.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Meyer, S., Held, L., and Hoehle, M. (2016), “polyCub: Cubature over Polygonal Domains.”

  • Preisler, H. K., Ager, A. A., Johnson, B. K., and Kie, J. G. (2004), “Modeling Animal Movements Using Stochastic Differential Equations,” Environmetrics, 15(7), 643–657.

    Article  Google Scholar 

  • Preisler, H. K., Ager, A. A., and Wisdom, M. J. (2013), “Analyzing Animal Movement Patterns Using Potential Functions,” Ecosphere, 4(3), 32–32.

    Article  Google Scholar 

  • Quevillon, L. E., Hanks, E. M., Bansal, S., and Hughes, D. P. (2015), “Social, Spatial, and Temporal Organization in a Complex Insect Society,” Scientific Reports, 5.

  • Russell, J. C., Hanks, E. M., Haran, M., and Hughes, D. P. (2017), “A Spatially-Varying Stochastic Differential Equation Model for Animal Movement,” arXiv:1603.07630 [stat].

  • Scharf, H. R., Hooten, M. B., Fosdick, B. K., Johnson, D. S., London, J. M., and Durban, J. W. (2015), “Dynamic Social Networks Based on Movement,” arXiv:1512.07607 [stat].

  • Shaby, B. A., and Wells, M. T. (2010), “Exploring an Adaptive Metropolis Algorithm,” Duke University Tech Report.

  • Small, R. J., Lowry, L. F., Hoef, J. M., Frost, K. J., a. Delong, R., and Rehberg, M. J. (2005), “Differential Movements By Harbor Seal Pups in Contrasting Alaska Environments,” Marine Mammal Science, 21(4), 671–694.

    Article  Google Scholar 

  • Wikle, C., and Hooten, M. (2010), “A General Science-Based Framework for Dynamical Spatio-Temporal Models,” Test, 19(3), 417–451.

    Article  MathSciNet  MATH  Google Scholar 

  • Zucchini, W., and MacDonald, I. L. (2009), Hidden Markov Models for Time Series: An Introduction Using R, Boca Raton, FL, USA: CRC Press.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by NSF (DEB EEID 1414296), NIH (GM116927-01), NOAA (RWO 103), CPW (TO 1304), and NSF (DMS 1614392). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank Brett McClintock, Jay VerHoef, two anonymous reviewers, and an anonymous AE for their helpful suggestions on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephraim M. Hanks.

Appendices

Appendix A: Algorithm for Simulating RSDEs

We here describe an algorithm for simulating from RSDEs constrained to lie within a domain \(\mathcal {D}\).

figure a

Appendix B: Simulation Example

In this Appendix, we consider a simple simulation example that illustrates the possible bias incurred by not accounting for constraints in movement. We consider a simple version of the reflected SDE in (8)–(9) in which \(\beta =0\) and \(c(\mathbf {x},\tau )=\sigma \)

$$\begin{aligned} d\mathbf {x}_\tau&= \mathbf {v}_\tau {\hbox {d}}\tau +\mathbf {k}_\tau {\hbox {d}}\tau \end{aligned}$$
(22)
$$\begin{aligned} d\mathbf {v}_\tau&= \sigma \mathbf {I}d\mathbf {w}_\tau \end{aligned}$$
(23)

and where \(\mathbf {k}_\tau \) is as given in (10). We refer to this constrained process as reflected integrated Brownian motion (RIBM) because the unconstrained version of this process (when \(\mathbf {k}_\tau =0\)) is two-dimensional integrated Brownian motion (IBM). Figure 5a shows a path simulated from RIBM for a given polygonal constraint \(\mathcal {D}\). When the path is far from the boundary \(\partial \mathcal {D}\), the path behaves identically to IBM. When the path is near the border \(\partial \mathcal {D}\), it often ends up identically on the boundary for short periods of time, because the minimal \(\mathbf {k}\) process keeps \(\mathbf {x}_t\) from leaving \(\mathcal {D}\). We also simulated noisy telemetry observations (Fig. 5b) under Gaussian observation error at 300 regularly spaced time points

$$\begin{aligned} \mathbf {s}_t \sim \text {N}(\mathbf {x}_t,\kappa ^2\mathbf {I}),\ t=1,2,\ldots ,300. \end{aligned}$$
(24)

We considered estimation of model parameters \({\varvec{\theta }}=(\sigma ,\kappa )'\) by specifying diffuse half-normal priors (with variance = 100) for \(\sigma \) and \(\kappa \), and sampling from the posterior distribution \([{\varvec{\theta }}|\mathbf {s}_{1:300}]\) using PMMH algorithms (Andrieu et al. 2010). Code to replicate this simulation study is available upon request. We considered estimation from the true model, RIBM, by constructing a particle filter using the projected simulation approach in Algorithm 1. We estimated model parameters using an unconstrained IBM model for \(\mathbf {x}_\tau \) by constructing a particle filter without any projection or constraint. We note that it is possible to estimate \({\varvec{\theta }}\) under IBM by marginalizing over \(\mathbf {x}_{1:300}\) using the convolution approach of Hooten and Johnson (2017), but we instead used PMMH to allow a more direct comparison between the estimates of \({\varvec{\theta }}\) under constrained (RIBM) and unconstrained (IBM) models. Each PMMH sampler was run for 10,000 iterations, with convergence of Markov chains assessed visually.

Fig. 5
figure 5

Simulation example (IBM). An individual’s path, constrained to occur within the polygon, was simulated using RIBM (a), and iid Gaussian error was added (b) to simulate telemetry observation error. The observation error variance (c) and latent Brownian motion error variance (d) were estimated using PMMH for both RIBM and IBM models with diffuse half-normal priors. Results show some bias in the Brownian motion error variance. Samples from the posterior distribution of animal paths \(\mathbf {x}_{1:T}|\mathbf {s}_{1:T}\) from the RIBM model (e) are constrained to lie within \(\mathcal {D}\), while those from the IBM model (f) are not.

In general, the PMMH algorithm is less computationally efficient for our system than the MCMC algorithm that we develop in Sect. 3.1. The PMMH algorithm essentially attempts a block update of the entire latent path \(\mathbf {x}_{1:300}\) at each MCMC algorithm, while the approach in Sect. 3.1 considers updating each \(\mathbf {x}_t\) one at a time. Code to compare both of these approaches is available upon request.

Figure 5c shows the estimated posterior distributions for the observation error standard deviation \(\kappa \) under IBM and RIBM, and Fig. 5d shows the posterior distributions for the Brownian motion standard deviation \(\sigma \). There is little difference between constrained (RIBM) and unconstrained (IBM) models in the posterior distribution of the observation error \(\kappa \) (Fig. 5c), but the IBM model overestimates the Brownian motion standard deviation \(\sigma \) (Fig. 5d). Figure A.1e shows 10 sample paths from the posterior distribution of \(\mathbf {x}_{1:300}\) under RIBM, and Fig. 1f shows 10 sample paths from the posterior distribution under IBM. From this simulation example, it is clear that parameter estimates obtained without accounting for constraints in movement can show bias under model misspecification, though even under misspecification the 95\(\%\) equal-tailed credible intervals of all model parameters under IBM include the true values simulated under RIBM. This may indicate that estimates obtained by fitting unconstrained movement models may be useful, even when we know the underlying movement process is constrained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanks, E.M., Johnson, D.S. & Hooten, M.B. Reflected Stochastic Differential Equation Models for Constrained Animal Movement . JABES 22, 353–372 (2017). https://doi.org/10.1007/s13253-017-0291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-017-0291-8

Keywords

Navigation