×

Influence of internal stresses on stability of multilayer micropolar tubes. (English) Zbl 07619134

Summary: Within the nonlinear Cosserat continuum, the stability of a compressed multilayer tube under internal and external hydrostatic pressures is studied. The tube is formed by attaching to each other \(N\) hollow cylinders that have been subjected to preliminary deformations of axial extension-compression and contains internal stresses. For the model of a physically linear micropolar material, the system of linearized equilibrium equations is derived, which describes the behavior of a multilayer cylindrical tube in a perturbed state. Using a special substitution, the stability analysis is reduced to solving a linear homogeneous boundary-value problem for a system of \(6N\) ordinary differential equations. In the case of a three-layer tube made of dense polyurethane foam, the stability regions were constructed in the planes of loading parameters (the relative axial compression and the relative external or internal pressure) for different preliminary deformations of inner and outer layers (coatings). According to the results obtained, the preliminary extension of both the outer and inner coatings generally stabilizes the considered deformations of the three-layer tube, while the effect of their preliminary compression is negative. It should be noted here that the pre-stressed outer coating has a more significant influence on the tube stability than the pre-stressed inner coating. In addition, the described effects of preliminary deformations are more pronounced for tubes with thicker coatings.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Green AE, Adkins JE. Large elastic deformations and non-linear continuum mechanics. Oxford: Clarendon Press, 1960. · Zbl 0090.17501
[2] Volmir AS. Stability of deformable systems. Dayton, OH: Wright-Patterson AFB, Foreign Technology Division, 1970.
[3] Pignataro M, Rizzi N, Luongo A. Stability, bifurcation and postcritical behaviour of elastic structures. Amsterdam: Elsevier, 1991.
[4] Timoshenko SP, Gere JM. Theory of elastic stability. New York: Dover Publications, 2009.
[5] Fu YB, Ogden RW. Nonlinear stability analysis of pre-stressed elastic bodies. Contin Mech Thermodyn1999; 11: 141-172. · Zbl 1066.74541 · doi:10.1007/s001610050108
[6] Merodio J, Ogden RW, Rodríguez J. The influence of residual stress on finite deformation elastic response. Int J Nonlin Mech2013; 56: 43-49. · doi:10.1016/j.ijnonlinmec.2013.02.010
[7] Merodio J, Ogden RW. Extension, inflation and torsion of a residually stressed circular cylindrical tube. Contin Mech Thermodyn2016; 28: 157-174. · Zbl 1348.74052 · doi:10.1007/s00161-015-0411-z
[8] Levin VA, Zubov LM, Zingerman KM. The torsion of a composite, nonlinear-elastic cylinder with an inclusion having initial large strain. Int J Solid Struct2014; 51: 1403-1409. · doi:10.1016/j.ijsolstr.2013.12.034
[9] Levin VA, Zubov LM, Zingerman KM. An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains. Int J Solid Struct2015; 67-68: 244-249. · doi:10.1016/j.ijsolstr.2015.04.024
[10] Levin VA. Equilibrium of micropolar bodies with predeformed regions. The superposition of large deformations. J Appl Math Mech2017; 81(3): 223-227. · Zbl 1440.74019 · doi:10.1016/j.jappmathmech.2017.08.014
[11] Levin VA, Zubov LM, Zingerman KM. Multiple joined prestressed orthotropic layers under large strains. Int J Eng Sci2018; 133: 47-59. · Zbl 1423.74134 · doi:10.1016/j.ijengsci.2018.08.008
[12] Zubov LM. Universal solution of nonlinear elasticity for a hollow cylinder with prestressed coatings. Acta Mech2019; 230: 4137-4143. · Zbl 1431.74027
[13] Bowden N, Brittain S, Evans AG, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nat1998; 393(6681): 146-149. · doi:10.1038/30193
[14] Cao Y, Hutchinson JW. Wrinkling phenomena in neo-Hookean film/substrate bilayers. J Appl Mech2012; 79(3): 031019. · doi:10.1115/1.4005960
[15] Hutchinson JW. The role of nonlinear substrate elasticity in the wrinkling of thin films. Phil Trans R Soc A Math Phys Eng Sci2013; 371(1993): 20120422. · Zbl 1327.74102 · doi:10.1098/rsta.2012.0422
[16] Eremeev VV, Zubov LM. Buckling of a two-layered circular plate with a prestressed layer. Math Mech Solid2017; 22(4): 773-781. · Zbl 1371.74109 · doi:10.1177/1081286515612527
[17] Sheydakov DN. Stability of circular micropolar rod with prestressed two-layer coating. Contin Mech Thermodyn2021; 33: 1313-1329. · Zbl 1537.74170 · doi:10.1007/s00161-020-00968-z
[18] Eringen AC. Nonlocal continuum field theories. New York: Springer, 2002. · Zbl 1023.74003
[19] Kroner E. Elasticity theory of materials with long range cohesive forces. Int J Solid Struct1967; 3(5): 731-742. · Zbl 0163.19402 · doi:10.1016/0020-7683(67)90049-2
[20] Cosserat E, Cosserat F. Theorie des corps deformables. Paris: Librairie Scientifique A, Hermann et Fils, 1909. · JFM 40.0862.02
[21] Eringen AC. Microcontinuum field theory. I. Foundations and solids. New York: Springer, 1999. · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[22] Kafadar CB, Eringen AC. Micropolar media—I. The classical theory. Int J Eng Sci1971; 9(3): 271-305. · Zbl 0218.73004 · doi:10.1016/0020-7225(71)90040-1
[23] Maugin GA. On the structure of the theory of polar elasticity. Phil Tran R Soc Lond A1998; 356: 1367-1395. · Zbl 0916.73005 · doi:10.1098/rsta.1998.0226
[24] Toupin RA. Theories of elasticity with couple-stress. Arch Rat Mech Anal1964; 17(2): 85-112. · Zbl 0131.22001 · doi:10.1007/BF00253050
[25] Mindlin RD. Micro-structure in linear elasticity. Arch Rat Mech Anal1964; 16: 51-78. · Zbl 0119.40302 · doi:10.1007/BF00248490
[26] Auffray N, dell’Isola F, Eremeyev V, et al. Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math Mech Solid2015; 20(4): 375-417. · Zbl 1327.76008 · doi:10.1177/1081286513497616
[27] Eremeyev VA, Cazzani A, dell’Isola F. On nonlinear dilatational strain gradient elasticity. Contin Mech Thermodyn2021; 33(4): 1429-1463. · Zbl 1537.74025 · doi:10.1007/s00161-021-00993-6
[28] Eremeyev VA. Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity. Mech Res Commun2021; 117: 103782. · doi:10.1016/j.mechrescom.2021.103782
[29] Capriz G, Giovine P, Mariano PM, et al. Mathematical models of granular matter. Berlin: Springer, 2008. · Zbl 1138.76005 · doi:10.1007/978-3-540-78277-3
[30] Pasternak E, Mühlhaus HB. Generalised homogenisation procedures for granular materials. J Eng Math2005; 52(1): 199-229. · Zbl 1176.74056 · doi:10.1007/s10665-004-3950-z
[31] Lakes RS. Experimental microelasticity of two porous solids. Int J Solid Struct1986; 22: 55-63. · doi:10.1016/0020-7683(86)90103-4
[32] Diebels S. A micropolar theory of porous media: constitutive modelling. Transp Porous Media1999; 34(1-3): 193-208. · doi:10.1023/A:1006517625933
[33] Forest S, Sab K. Cosserat overall modelling of heterogeneous materials. Mech Res Commun1998; 25(4): 449-454. · Zbl 0949.74054 · doi:10.1016/S0093-6413(98)00059-7
[34] Neff P. A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int J Eng Sci2006; 44(8-9): 574-594. · Zbl 1213.74032 · doi:10.1016/j.ijengsci.2006.04.002
[35] Reccia E, de Bellis ML, Trovalusci P, et al. Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos B Eng2018; 136: 39-45. · doi:10.1016/j.compositesb.2017.10.017
[36] Yang JFC, Lakes RS. Experimental study of micropolar and couple stress elasticity in compact bone in bending. J Biomech1982; 15(2): 91-98. · doi:10.1016/0021-9290(82)90040-9
[37] Park HC, Lakes RS. Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J Biomech1986; 19(5): 385-397. · doi:10.1016/0021-9290(86)90015-1
[38] Eremeyev VA, Turco E. Enriched buckling for beam-lattice metamaterials. Mech Res Commun2020; 103: 103458. · doi:10.1016/j.mechrescom.2019.103458
[39] Chróścielewski J, dell’Isola F, Eremeyev VA, et al. On rotational instability within the nonlinear six-parameter shell theory. Int J Solid Struct2020; 196: 179-189. · doi:10.1016/j.ijsolstr.2020.04.030
[40] Reccia E, Leonetti L, Trovalusci P, et al. A multiscale/multidomain model for the failure analysis of masonry walls: a validation with a combined FEM/DEM approach. Int J Multiscale Comput Eng2018; 16(4): 325-343. · doi:10.1615/IntJMultCompEng.2018026988
[41] Baraldi D, Cecchi A, Tralli A. Continuous and discrete models for masonry like material: a critical comparative study. Eur J Mech A Solids2015; 50: 39-58. · Zbl 1406.74037 · doi:10.1016/j.euromechsol.2014.10.007
[42] Sheydakov DN. Buckling of elastic composite rods of micropolar material subjected to combined loads. In: Altenbach H, Maugin GA, Erofeev V (eds) Mechanics of generalized continua—From micromechanical basics to engineering applications(Advanced Structured Materials, vol. 7). Berlin: Springer-Verlag, 2011, pp. 255-271. · doi:10.1007/978-3-642-19219-7_13
[43] Sheydakov DN. On stability of elastic rectangular sandwich plate subject to biaxial compression. In: Altenbach H, Eremeyev VA (eds) Shell-like structures—Non-classical theories and applications(Advanced Structured Materials, vol. 15). Berlin: Springer-Verlag, 2011, pp. 203-216. · doi:10.1007/978-3-642-21855-2_15
[44] Sheydakov DN, Altenbach H. Stability of inhomogeneous micropolar cylindrical tube subject to combined loads. Math Mech Solid2016; 21(9): 1082-1094. · Zbl 1370.74066 · doi:10.1177/1081286514553145
[45] Sheydakov DN. Size effect on buckling of non-uniform circular plate made of foam material. Mater Phys Mech2016; 28(1-2): 26-30.
[46] Xie G, Long S. Elastic vibration behaviors of carbon nanotubes based on micropolar mechanics. Comput Mater Contin2006; 4(1): 11-20. · Zbl 1231.74167
[47] Akgöz B, Civalek Ö. Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J Comput Theor Nanosci2011; 8: 1821-1827. · doi:10.1166/jctn.2011.1888
[48] Izadi R, Tuna M, Trovalusci P, et al. Torsional characteristics of carbon nanotubes: micropolar elasticity models and molecular dynamics simulation. Nanomaterials2021; 11(2): 453. · doi:10.3390/nano11020453
[49] Lakes R. Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Muhlhaus H (ed.) Continuum models for materials with micro-structure. New York: Wiley, 1995, pp. 1-22. · Zbl 0900.73005
[50] Yakobson BI, Smalley RE. Fullerene nanotubes: C 1,000,000 and beyond: some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family. Am Sci1997; 85: 324-337.
[51] Popov VN. Carbon nanotubes: properties and application. Mater Sci Eng R Rep2004; 43: 61-102. · doi:10.1016/j.mser.2003.10.001
[52] Salvetat JP, Bonard JM, Thomson N, et al. Mechanical properties of carbon nanotubes. Appl Phys A1999; 69: 255-260. · doi:10.1007/s003390050999
[53] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci1996; 6: 15-50. · doi:10.1016/0927-0256(96)00008-0
[54] Liu B, Zhou K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications. Prog Mater Sci2019; 100: 99-169. · doi:10.1016/j.pmatsci.2018.09.004
[55] Liew K, Wong C, He X, et al. Nanomechanics of single and multiwalled carbon nanotubes. Phys Rev B2004; 69: 115429. · doi:10.1103/PhysRevB.69.115429
[56] Zhang Y, Liu G, Wang J. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B2004; 70: 205430. · doi:10.1103/PhysRevB.70.205430
[57] Khademolhosseini F, Rajapakse R, Nojeh A. Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci2010; 48: 736-742. · doi:10.1016/j.commatsci.2010.03.021
[58] Tuna M, Kırca M. Unification of Eringen’s nonlocal parameter through an optimization-based approach. Mech Adv Mater Struct2021; 28(8): 839-848. · doi:10.1080/15376494.2019.1601312
[59] Zubov LM. Nonlinear theory of dislocations and disclinations in elastic bodies. Berlin: Springer, 1997. · Zbl 0899.73001
[60] Eremeyev VA, Zubov LM. On the stability of elastic bodies with couple-stresses. Mech Solids1994; 29(3): 172-181.
[61] Nikitin E, Zubov LM. Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J Elast1998; 51: 1-22. · Zbl 0929.74014 · doi:10.1023/A:1007569315660
[62] Pietraszkiewicz W, Eremeyev VA. On natural strain measures of the non-linear micropolar continuum. Int J Solid Struct2009; 46: 774-787. · Zbl 1215.74004 · doi:10.1016/j.ijsolstr.2008.09.027
[63] Eremeyev VA, Pietraszkiewicz W. Material symmetry group of the non-linear polar-elastic continuum. Int J Solid Struct2012; 49(14): 1993-2005. · doi:10.1016/j.ijsolstr.2012.04.007
[64] Zubov LM. Universal deformations of micropolar isotropic elastic solids. Math Mech Solid2016; 21(2): 152-167. · Zbl 1333.74008 · doi:10.1177/1081286515577036
[65] Lurie AI. Non-linear theory of elasticity. Amsterdam: North-Holland, 1990. · Zbl 0715.73017
[66] Ogden RW. Non-linear elastic deformations. Mineola, NY: Dover, 1997.
[67] Truesdell C. A first course in rational continuum mechanics. New York: Academic Press, 1977. · Zbl 0357.73011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.