×

Modeling and inference for multivariate time series of counts based on the INGARCH scheme. (English) Zbl 07602494

Summary: Modeling multivariate time series of counts using the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) scheme is proposed. The key idea is to model each component of the time series with a univariate INGARCH model, where the conditional distribution is modeled with a one-parameter exponential family distribution, and to use a (nonlinear) parametric function of all components to recursively produce the conditional means. It is shown that the proposed multivariate INGARCH (MINGARCH) model is strictly stationary and ergodic. For inference, the quasi-maximum likelihood estimator (QMLE) and the minimum density power divergence estimator (MDPDE) for robust estimation are adopted, and their consistency and asymptotic normality are verified. As an application, the change point test based on the QMLE and MDPDE is illustrated. The Monte Carlo simulation study and real data analysis using the number of weekly syphilis cases in the United States are conducted to confirm the validity of the proposed method.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

ZIM
Full Text: DOI

References:

[1] Ahmad, A.; Francq, C., Poisson QMLE of count time series models, J. Time Ser. Anal., 37, 291-314 (2016) · Zbl 1381.62244
[2] Al-Osh, M. A.; Alzaid, A. A., First-order integer-valued autoregressive (INAR(1)) process, J. Time Ser. Anal., 8, 261-275 (1987) · Zbl 0617.62096
[3] Basu, A.; Harris, I. R.; Hjort, N. L.; Jones, M. C., Robust and efficient estimation by minimising a density power divergence, Biometrika, 85, 549-559 (1998) · Zbl 0926.62021
[4] Chen, C. W.S.; Khamthong, K.; Lee, S., Markov switching integer-valued generalized auto-regressive conditional heteroscedastic models for Dengue counts, J. R. Stat. Soc., Ser. C, Appl. Stat., 68, 963-983 (2019)
[5] Chen, J.; Gupta, A. K., Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance (2012), Birkhäuser: Birkhäuser Boston · Zbl 1273.62016
[6] Christou, V.; Fokianos, K., Quasi-likelihood inference for negative binomial time series models, J. Time Ser. Anal., 35, 55-78 (2014) · Zbl 1301.62084
[7] Csörgő, M.; Horváth, L., Limit Theorems in Change-Point Analysis (1997), Wiley: Wiley New York · Zbl 0884.62023
[8] Cui, Y.; Zhu, F., A new bivariate integer-valued GARCH model allowing for negative cross-correlation, Test, 27, 428-452 (2018) · Zbl 1404.62085
[9] Darolles, S.; Le Fol, G.; Lu, Y.; Sun, R., Bivariate integer-autoregressive process with an application to mutual fund flows, J. Multivar. Anal., 173, 181-203 (2019) · Zbl 1451.60038
[10] Davis, R. A.; Liu, H., Theory and inference for a class of nonlinear models with application to time series of counts, Stat. Sin., 26, 1673-1707 (2016) · Zbl 1356.62137
[11] Davis, R. A.; Wu, R., A negative binomial model for time series of counts, Biometrika, 96, 735-749 (2009) · Zbl 1170.62062
[12] Douc, R.; Fokianos, K.; Moulines, E., Asymptotic properties of quasi-maximum likelihood estimators in observation-driven time series models, Electron. J. Stat., 11, 2707-2740 (2017) · Zbl 1366.62173
[13] Ferland, R.; Latour, A.; Oraichi, D., Integer-valued GARCH process, J. Time Ser. Anal., 27, 923-942 (2006) · Zbl 1150.62046
[14] Fokianos, K.; Fried, R., Interventions in INGARCH processes, J. Time Ser. Anal., 31, 210-225 (2010) · Zbl 1242.62095
[15] Fokianos, K.; Fried, R., Interventions in log-linear Poisson autoregression, Stat. Model., 12, 299-322 (2012) · Zbl 07257881
[16] Fokianos, K.; Gombay, E.; Hussein, A., Retrospective change detection for binary time series models, J. Stat. Plan. Inference, 145, 102-112 (2014) · Zbl 1278.62143
[17] Fokianos, K.; Rahbek, A.; Tjøstheim, D., Poisson autoregression, J. Am. Stat. Assoc., 104, 1430-1439 (2009) · Zbl 1205.62130
[18] Fokianos, K.; Støve, B.; Tjøstheim, D.; Doukhan, P., Multivariate count autoregression, Bernoulli, 26, 471-499 (2020) · Zbl 1456.62155
[19] Franke, J.; Kirch, C.; Kamgaing, J. T., Changepoints in times series of counts, J. Time Ser. Anal., 33, 757-770 (2012) · Zbl 1281.62181
[20] Heinen, A.; Rengifo, E., Multivariate modelling of time series count data: an autoregressive conditional Poisson model (2003), Université Catholique de Louvain, Center for Operations Research and Econometrics (CORE), CORE Discussion Paper 2003/25
[21] Hong, C.; Kim, Y., Automatic selection of the tuning parameter in the minimum density power divergence estimation, J. Korean Stat. Soc., 30, 453-465 (2001)
[22] Hudecová, Š., Structural changes in autoregressive models for binary time series, J. Stat. Plan. Inference, 143, 1744-1752 (2013) · Zbl 1279.62186
[23] Hudecová, Š.; Hušková, M.; Meintanis, S. G., Tests for structural changes in time series of counts, Scand. J. Stat., 44, 843-865 (2017) · Zbl 1419.62233
[24] Jazi, M. A.; Jones, G.; Lai, C. D., First-order integer valued AR processes with zero inflated Poisson innovations, J. Time Ser. Anal., 33, 954-963 (2012) · Zbl 1281.62197
[25] Kang, J.; Lee, S., Minimum density power divergence estimator for Poisson autoregressive models, Comput. Stat. Data Anal., 80, 44-56 (2014) · Zbl 1506.62089
[26] Kang, J.; Lee, S., Parameter change test for Poisson autoregressive models, Scand. J. Stat., 41, 1136-1152 (2014) · Zbl 1305.62313
[27] Kang, J.; Song, J., A robust approach for testing parameter change in Poisson autoregressive models, J. Korean Stat. Soc., 49, 1285-1302 (2020) · Zbl 1485.62119
[28] Kim, B.; Lee, S., Robust estimation for zero-inflated Poisson autoregressive models based on density power divergence, J. Stat. Comput. Simul., 87, 2981-2996 (2017) · Zbl 07192106
[29] Kim, B.; Lee, S., Robust change point test for general integer-valued time series models based on density power divergence, Entropy, 22, 493:1-493:22 (2020)
[30] Kim, B.; Lee, S., Robust estimation for general integer-valued time series models, Ann. Inst. Stat. Math., 72, 1371-1396 (2020) · Zbl 1466.62388
[31] Kim, B.; Lee, S.; Kim, D., Robust estimation for bivariate Poisson INGARCH models, Entropy, 23, 367:1-367:25 (2021)
[32] Law, A. M., Simulation Modeling and Analysis (2014), McGraw-Hill: McGraw-Hill New York
[33] Lee, S.; Ha, J.; Na, O.; Na, S., The CUSUM test for parameter change in time series models, Scand. J. Stat., 30, 781-796 (2003) · Zbl 1053.62085
[34] Lee, S.; Lee, S., Exponential family QMLE-based CUSUM test for integer-valued time series, Commun. Stat., Simul. Comput. (2021), (online published)
[35] Lee, S.; Lee, Y.; Chen, C. W.S., Parameter change test for zero-inflated generalized Poisson autoregressive models, Statistics, 50, 540-557 (2016) · Zbl 1359.62376
[36] Lee, S.; Na, O., Test for parameter change based on the estimator minimizing density-based divergence measures, Ann. Inst. Stat. Math., 57, 553-573 (2005) · Zbl 1095.62024
[37] Lee, Y.; Lee, S., CUSUM test for general nonlinear integer-valued GARCH models: comparison study, Ann. Inst. Stat. Math., 71, 1033-1057 (2019) · Zbl 1431.62396
[38] Lee, Y.; Lee, S.; Tjøstheim, D., Asymptotic normality and parameter change test for bivariate Poisson INGARCH models, Test, 27, 52-69 (2018) · Zbl 06852282
[39] Liu, H., Some models for time series of counts (2012), Columbia University: Columbia University USA, Ph.D. thesis
[40] McKenzie, E., Some simple models for discrete variate time series, J. Am. Water Resour. Assoc., 21, 645-650 (1985)
[41] Page, E. S., A test for a change in a parameter occurring at an unknown point, Biometrika, 42, 523-527 (1955) · Zbl 0067.11602
[42] Pedeli, X.; Karlis, D., A bivariate INAR(1) process with application, Stat. Model., 11, 325-349 (2011) · Zbl 1420.62393
[43] Straumann, D.; Mikosch, T., Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach, Ann. Stat., 34, 2449-2495 (2006) · Zbl 1108.62094
[44] Strelen, J. C.; Nassaj, F., Analysis and generation of random vectors with copulas, (Henderson, S. G.; Biller, B.; Hsieh, M. H.; Shortle, J.; Tew, J. D.; Barton, R. R., Proceedings of the 2007 Winter Simulation Conference (2007)), 488-496
[45] Warwick, J., A data-based method for selecting tuning parameters in minimum distance estimators, Comput. Stat. Data Anal., 48, 571-585 (2005) · Zbl 1429.62135
[46] Warwick, J.; Jones, M. C., Choosing a robustness tuning parameter, J. Stat. Comput. Simul., 75, 581-588 (2005) · Zbl 1115.62317
[47] Weiß, C. H., An Introduction to Discrete-Valued Time Series (2018), Wiley: Wiley New York · Zbl 1407.62009
[48] Wu, W.; Shao, X., Limit theorems for iterated random functions, J. Appl. Probab., 41, 425-436 (2004) · Zbl 1046.60024
[49] Yang, M.; Zamba, G.; Cavanaugh, J., ZIM: zero-inflated models (ZIM) for count time series with excess zeros (2018), r package version 1.1.0
[50] Zhu, F., Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models, J. Math. Anal. Appl., 389, 58-71 (2012) · Zbl 1232.62120
[51] Zhu, F., Zero-inflated Poisson and negative binomial integer-valued GARCH models, J. Stat. Plan. Inference, 142, 826-839 (2012) · Zbl 1232.62121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.