×

Study on the generalized \(k\)-Hilfer-Prabhakar fractional viscoelastic-plastic model. (English) Zbl 07590436

Summary: The general fractional operator shows its great predominance in the construction of constitutive model owing to its agility in choosing the embedded parameters. A generalized fractional viscoelastic-plastic constitutive model with the sense of the \(k\)-Hilfer-Prabhakar \((k-H-P)\) fractional operator, which has the character recovering the known classical models from the proposed model, is established in this article. In order to describe the damage in the creep process, a time-varying elastic element \(E(t)\) is used in the proposed model with better representation of accelerated creep stage. According to the theory of the kinematics of deformation and the Laplace transform, the creep constitutive equation and the strain of the modified model are established and obtained. The validity and rationality of the proposed model are identified by fitting with the experimental data. Finally, the influences of the fractional derivative order \(\mu\) and parameter \(k\) on the creep process are investigated through the sensitivity analyses with two- and three-dimensional plots.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Liu, X. The conspectus of rock rheology. Beijing: Geology Press, 1994.
[2] Yoshida, H, Horii, H. A micromechanics-based model for creep behavior of rock. Appl Mech Rev 1992; 45(8): 294-303. · doi:10.1115/1.3119760
[3] Bérest, P, Gharbi, H, Brouard, B, et al. Very slow creep tests on salt samples. Rock Mech Rock Eng 2019; 52: 2917-2934. · doi:10.1007/s00603-019-01778-9
[4] Jun, S. Rock rheological mechanics and its advance in engineering applications. Chin J Rock Mech Eng 2007; 26(6): 1081-1106.
[5] Reza Taheri, S, Pak, A, Shad, S, et al. Investigation of rock salt layer creep and its effects on casing collapse. Int J Mining Sci Technol 2020; 30(3): 357-365. · doi:10.1016/j.ijmst.2020.02.001
[6] Hamza, O, Stace, R. Creep properties of intact and fractured muddy siltstone. Int J Rock Mech Mining Sci 2018; 106: 109-116. · doi:10.1016/j.ijrmms.2018.03.006
[7] Luo, GY, Yang, WD, Bo, CJ, et al. Viscoelastic analysis of the creep characteristics of interlayered rock specimens under uniaxial compression. Mech Time-Depend Mater. Epub ahead of print 31 December 2019. DOI: 10.1007/s11043-019-09441-0 · doi:10.1007/s11043-019-09441-0
[8] Kachanov, LM. On the time to failure under creep conditions (in Russian). Izv Akad Nauk SSR 1958; 8: 26-31. · Zbl 0107.18501
[9] Rabotnov, YN. Damage from creep. Zhurn Prikl Mekh Tekhn Phys 1963; 2: 113-123. · Zbl 0126.40902
[10] Bui, TA, Wong, H, Deleruyelle, F, et al. A thermodynamically consistent model accounting for viscoplastic creep and anisotropic damage in unsaturated rocks. Int J Solids Struct 2017; 117: 26-38. · doi:10.1016/j.ijsolstr.2017.04.015
[11] Wang, JB, Zhang, Q, Song, ZP, et al. Creep properties and damage constitutive model of salt rock under uniaxial compression. Int J Damage Mech 2020; 29(6): 902-922.
[12] Zhang, SG, Liu, WB, Lv, HM. Creep energy damage model of rock graded loading. Results Phys 2019; 12: 1119-1125. · doi:10.1016/j.rinp.2018.12.081
[13] Zhou, HW, Wang, CP, Han, BB, et al. A creep constitutive model for salt rock based on fractional derivatives. Int J Rock Mech Mining Sci 2011; 48(1): 116-121. · doi:10.1016/j.ijrmms.2010.11.004
[14] Bas, E, Ozarslan, R. Real world applications of fractional models by Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 2018; 116: 121-125. · Zbl 1442.34008 · doi:10.1016/j.chaos.2018.09.019
[15] Feng, YY, Yang, XJ, Liu, JG, et al. A new fractional Nishihara-type model with creep damage considering thermal effect. Eng Fract Mech 2021; 242(1): 107451. · doi:10.1016/j.engfracmech.2020.107451
[16] Zhuravkov, MA, Romanova, NS. Review of methods and approaches for mechanical problem solutions based on fractional calculus. Math Mech Solids 2016; 21(5): 595-620. · Zbl 1370.74002
[17] Yang, XJ, Gao, F, Ju, Y. General Fractional Derivatives With Applications in Viscoelasticity. New York: Academic Press, 2020. · Zbl 1446.26001
[18] Yang, XJ. General Fractional Derivatives: Theory, Methods and Applications. New York: CRC Press, 2019. · Zbl 1417.26001 · doi:10.1201/9780429284083
[19] Yang, XJ. New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity. Therm Sci 2019; 23(6B), 3751-3757. · doi:10.2298/TSCI180921260Y
[20] Yang, XJ, Gao, F, Jing, HW. New mathematical models in anomalous viscoelasticity from the derivative with respect to another function view point. Therm Sci 2019; 23(3A): 1555-1561. · doi:10.2298/TSCI190220277Y
[21] Yang, XJ. New general fractional-order rheological models with kernels of Mittag-Leffler functions. Rom Rep Phys 2017; 69(4): 118.
[22] Caputo, M. Linear model of dissipation whose q is almost frequency independent - II. Geophys J Int 1967; 13(5): 529-539. · doi:10.1111/j.1365-246X.1967.tb02303.x
[23] Liouville, J. Memoire sur le calcul des different idles a indices quelconques. J Ecole Polytech 1832; 13(21): 71-162.
[24] Riemann, B. Versucheinerallgemeinen auffassung der integration und differentiation. In: Bernhard Riemanns Gesammelte Mathematische Werke, January 1847, pp. 353-362.
[25] Giusti, A, Colombaro, I. Prabhakar-like fractional viscoelasticity. Commun Nonlin Sci Numer Sim 2018; 56: 138-143. · Zbl 1510.74015 · doi:10.1016/j.cnsns.2017.08.002
[26] Yang, XJ. An Introduction to Hypergeometric and Superhyperbolic Functions. New York: Academic Press, 2021. · Zbl 1453.33001
[27] Tomovski, Ž, Sandev, T. Fractional wave equation with a frictional memory kernel of Mittag-Leffler type. Appl Math Computat 2012; 218(20): 10022-10031. · Zbl 1246.35204 · doi:10.1016/j.amc.2012.03.055
[28] Dorrego, GA. The \(k\)-Mittag-Leffler function. Int J Contemp Math Sci 2012; 7(15): 705-716. · Zbl 1248.33039
[29] Prabhakar, TR. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math J 1971; 19(1): 7-15. · Zbl 0221.45003
[30] Diaz, R, Pariguan, E. On hypergeometric functions and \(k\)-Pochammer symbol. Divulgaciones Matematicas 2008; 15(2): 1-12.
[31] Panchal, SK, Khandagale, AD, Dole, PV. \(k\)-Hilfer-Prabhakar fractional derivatives and applications. Indian J Math 2016; 59(3): 1-18. · Zbl 1387.26015
[32] Doetch, G. Theorie und An. der Laplace-Transformation. Berlin: Springer, 1937. · JFM 63.0368.01 · doi:10.1007/978-3-642-99536-1
[33] de Oliveira, DS, Capelas de Oliveira, E, Deif, S. On a sum with a three-parameter Mittag-Leffler function. Integral Transforms Special Functions 2016; 27(8): 639-652. · Zbl 1350.33038 · doi:10.1080/10652469.2016.1182523
[34] Yang, SQ. Study on Rheological Mechanical Properties of Rock and Its Engineering Applications. PhD Thesis, HoHai University, Nanjing, China, March 2006.
[35] Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London: Imperial College Press, 2010. · Zbl 1210.26004 · doi:10.1142/p614
[36] Yang, TQ. Theory of Viscoelasticity. Shanghai: East China University of Science and Technology Press, 1990.
[37] Wang, YY, Sheng, DF. Study on the whole process of rock creep considering damage based on Burgers model. Chin Q Mech 2019; 40(1): 143-148.
[38] Wan, L. A Visco-Elastoplastic Damage Constitutive Model of Rock and Rock-Like Materials and Applications. PhD Thesis, Chongqing University, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.