×

Fractional wave equation with a frictional memory kernel of Mittag-Leffler type. (English) Zbl 1246.35204

Summary: The authors give an analytical treatment of a fractional wave equation with Caputo time fractional derivative and frictional memory kernel of Mittag-Leffler type. This problem generalizes a recently solved problem [the author and T. Sandev, Comput. Math. Appl. 62, No. 3, 1554–1561 (2011; Zbl 1228.35246)] of a wave equation for a vibrating string in presence of a fractional friction with power-law memory kernel. Such equations can be used in the context of modeling processes in complex and viscoelastic media.

MSC:

35R11 Fractional partial differential equations
74H45 Vibrations in dynamical problems in solid mechanics
74K05 Strings
33E15 Other wave functions

Citations:

Zbl 1228.35246
Full Text: DOI

References:

[1] Agarwal, R. P., A propos d’une note de M. Pierre Humbert, CR Acad. Sci. Paris, 236, 2031-2032 (1953) · Zbl 0051.30801
[2] Agrawal, O. P., Solutions for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29, 145-155 (2002) · Zbl 1009.65085
[3] Figueiredo Camargo, R.; Capelas de Oliveira, E.; Vaz, J., On anomalous diffusion and the fractional generalized langevin equation for a harmonic oscillator, J. Math. Phys., 50, 123518 (2009) · Zbl 1373.82056
[4] Capelas de Oliveira, E.; Mainardi, F.; Vaz, J., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J. Special Topics, 193, 161 (2011)
[5] Caputo, M., Elasticità e Dissipazione (1969), Zanichelli: Zanichelli Bologna
[6] Chen, C. M.; Lin, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, 886-897 (2007) · Zbl 1165.65053
[7] Cheng, S. C.; Wu, J. N.; Tsai, M. R.; Hsieh, W. F., Spontaneous emission near the band edge of a three-dimensional photonic crystal: a fractional calculus approach, J. Phys. Condens. Mat., 21, 015503 (2009)
[8] Craiem, D.; Rojo, F. J.; Atienza, J. M.; Armentano, R. L.; Guinea, G., Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries, Phys. Med. Biol., 53, 4543 (2008)
[9] K. Diethelm, M. Weibeer, Initial-boundary value problems for time-fractional diffusion-wave equations and their numerical solutions, in: A. Le Mehaute, J.A. Machado, J.C. Trigeasson, J. Sabatier (Eds.), Proceedings of the 1st IFAC Workshop on Fractional Differentiations and its Applications, ENSEIRB, Bordeaux, 2004.; K. Diethelm, M. Weibeer, Initial-boundary value problems for time-fractional diffusion-wave equations and their numerical solutions, in: A. Le Mehaute, J.A. Machado, J.C. Trigeasson, J. Sabatier (Eds.), Proceedings of the 1st IFAC Workshop on Fractional Differentiations and its Applications, ENSEIRB, Bordeaux, 2004.
[10] Galuea, L.; Kalla, S. L.; Al-Saqabi, B. N., Fractional extensions of the temperature field problems in oil strata, Appl. Math. Comput., 186, 35-44 (2007) · Zbl 1110.76050
[11] Gorenflo, R.; Mainardi, F., Fractional calculus, integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer Verlag: Springer Verlag Wien), 223-276 · Zbl 1438.26010
[12] Hahn, M.; Umarov, S., Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations, Fract. Calc. Appl. Anal., 14, 56-79 (2011) · Zbl 1273.35293
[13] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math. 2011 (2011) 51 pages, Article ID 298628.; H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math. 2011 (2011) 51 pages, Article ID 298628. · Zbl 1218.33021
[14] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Schmid, G.; Hänggi, P., Fractional Fokker-Planck dynamics: numerical algorithm and simulations, Phys. Rev. E, 73, 046133 (2006)
[15] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific Publishing Company: World Scientific Publishing Company Singapore · Zbl 0998.26002
[16] Humbert, P., Quelques résultats relatifs à la fonction de Mittag-Leffler, CR Acad. Sci. Paris, 236, 1467-1468 (1953) · Zbl 0050.10404
[17] Humbert, P.; Agarwal, R. P., Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations, Bull. Sci. Math. Ser., 2, 180-185 (1953) · Zbl 0052.06402
[18] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204 (2006), Elsevier (North-Holland) Science Publishers: Elsevier (North-Holland) Science Publishers Amsterdam · Zbl 1092.45003
[19] Kou, S. C.; Xie, X. S., Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule, Phys. Rev. Lett., 93, 180603 (2004)
[20] J. Liang, Y. Chen, B.M. Vinagre, I. Podlubny, Boundary stabilization of a fractional wave equation via a fractional order boundary controller, in: The First IFAC Symposium on Fractional Derivatives and Applications (FDA’04), July, Bordeaux, France, 2004.; J. Liang, Y. Chen, B.M. Vinagre, I. Podlubny, Boundary stabilization of a fractional wave equation via a fractional order boundary controller, in: The First IFAC Symposium on Fractional Derivatives and Applications (FDA’04), July, Bordeaux, France, 2004.
[21] J. Liang, W. Zhang, Y.Q. Chen, I. Podlubny, Robustness of boundary control of fractional wave equations with delayed boundary measurement using fractional order controller and the Smith predictor, in: Proceedings of 2005 ASME Design Engineering Technical Conferences, Long Beach, California, USA, 2005.; J. Liang, W. Zhang, Y.Q. Chen, I. Podlubny, Robustness of boundary control of fractional wave equations with delayed boundary measurement using fractional order controller and the Smith predictor, in: Proceedings of 2005 ASME Design Engineering Technical Conferences, Long Beach, California, USA, 2005. · Zbl 1125.93029
[22] Liang, J.; Chen, Y. Q., Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems, Int. J. Control, 79, 1462-1470 (2006) · Zbl 1125.65364
[23] Luchko, Y., Maximum principle and its application for the time-fractional diffusion equations, Fract. Calc. Appl. Anal., 14, 110-124 (2011) · Zbl 1273.35297
[24] Luchko, Y., Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15, 141-160 (2012) · Zbl 1276.26018
[25] Lutz, E., Fractional Langevin equation, Phys. Rev. E, 64, 051106 (2001)
[26] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7, 1461-1477 (1996) · Zbl 1080.26505
[27] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 23-28 (1996) · Zbl 0879.35036
[28] Mainardi, F.; Pagnini, G., The Wright functions as solutions of the time-fractional diffusion equation, Appl. Math.Comput., 141, 51-62 (2003) · Zbl 1053.35008
[29] Mainardi, F.; Pagnini, G.; Gorenflo, R., Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput., 187, 295-305 (2007) · Zbl 1122.26004
[30] Mainardi, F.; Paradisi, P., Fractional diffusive waves, J. Comput. Acoust., 9, 1417 (2001) · Zbl 1360.76272
[31] Mainardi, F.; Pironi, P., The fractional Langevin equation: Brownian motion revisited, Extr. Math., 10 140 (1996)
[32] Mathai, A. M.; Haubold, H. J., Special Functions for Applied Scientists (2008), Springer: Springer New York · Zbl 1151.33001
[33] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82, 3563 (1999)
[34] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[35] Miller, K. S.; Ross, B., An Introduction to The Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[36] Mirčeski, V.; Tomovski, Ž., Voltammetry based on fractional diffusion, J. Phys. Chem. B, 113, 2794-2799 (2009)
[37] Mirčeski, V.; Tomovski, Ž., Modeling of a voltammetric experiment in a limiting diffusion space, J. Solid State Electrochem., 15, 197-204 (2011)
[38] Mittag-Leffler, G. M., Sur la nouvelle function \(E_\alpha(x)\), CR Acad. Sci. Paris, 137, 554-558 (1903) · JFM 34.0435.01
[39] Momani, S., General solutions for the space- and time-fractional diffusion-wave equation, J. Phys. Sci., 10, 30-43 (2006)
[40] Odibat, Z. M.; Momani, S., Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181, 767-774 (2006) · Zbl 1148.65100
[41] Odibat, Z. M., A reliable modification of the rectangular decomposition method, Appl. Math. Comput., 183, 1226-1234 (2006) · Zbl 1109.65118
[42] Oldham, K. B.; Spainer, J., The replacement of Fick’s laws by a formulation involving semi-differentiation, J. Electroanal. Chem., 26, 331-341 (1970)
[43] Oldham, K. B.; Spainer, J., A general solution of the diffusion equation for semiinfinite geometries, J. Math. Anal. Appl., 39, 655-669 (1972) · Zbl 0209.12501
[44] Oldham, K. B.; Spainer, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0292.26011
[45] Paneva-Konovska, J., Inequalities and asymptotic formulae for the three parametric Mittag-Leffler functions, Math. Balkanica, 26, 203-210 (2012) · Zbl 1272.33021
[46] Paneva-Konovska, J., Convergence of series in three parametric Mittag-Leffler functions, Math. Slovaca, 62 (2012) · Zbl 1260.30004
[47] Plerou, V.; Gopikrishnan, P.; Amaral, L. A.N.; Gabaix, X.; Stanley, H. E., Economic fluctuations and anomalous diffusion, Phys. Rev. E, 62, R3023-R3026 (2000)
[48] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[49] Prabhakar, T. R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[50] Riveroa, M.; Trujillo, J. J.; Vázquez, L.; Velasco, M. P., Fractional dynamics of populations, Appl. Math. Comput., 218, 1089-1095 (2011) · Zbl 1226.92060
[51] Sandev, T.; Metzler, R.; Tomovski, Ž., Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A: Math. Theor., 44, 255203 (2011) · Zbl 1301.82042
[52] T. Sandev, Ž. Tomovski, Wave equation for a vibrating string in presence of a fractional friction, in: Proceedings in the Symposium on Fractional Signals and Systems, Lisbon, 4-6 November, 2009.; T. Sandev, Ž. Tomovski, Wave equation for a vibrating string in presence of a fractional friction, in: Proceedings in the Symposium on Fractional Signals and Systems, Lisbon, 4-6 November, 2009.
[53] Sandev, T.; Tomovski, Ž., The general time fractional wave equation for a vibrating string, J. Phys. A: Math. Theor., 43, 055204 (2010) · Zbl 1379.74012
[54] Sandev, T.; Tomovski, Ž., Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise, Phys. Scr., 82, 065001 (2010) · Zbl 1217.82056
[55] Sandev, T.; Tomovski, Ž.; Dubbeldam, J. L.A., Generalized Langevin equation with a three parameter Mittag-Leffler noise, Physica A, 390, 3627-3636 (2011)
[56] Saxena, R. K.; Mathai, A. M.; Haubold, H. J., Unified fractional kinetic equation and a fractional diffusion equation, Astrophys. Space Sci., 209, 299-310 (2004)
[57] El-Sayed, A. M.A.; Gaafar, F. M., Fractional calculus and some intermediate physical processes, Appl. Math. Comput., 144, 117-126 (2003) · Zbl 1049.35002
[58] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Physica A, 284, 376-384 (2000)
[59] Stanislavsky, A., Nonlinear reaction with fractional dynamics, Appl. Math. Comput., 174, 1122-1134 (2006) · Zbl 1090.65088
[60] Srivastava, H. M.; Tomovski, Ž., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211, 198-210 (2009) · Zbl 1432.30022
[61] Tomovski, Ž.; Hilfer, R.; Srivastava, H. M., Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral. Transform. Spec. Func., 21, 797-814 (2010) · Zbl 1213.26011
[62] Tomovski, Ž.; Sandev, T., Effects of a fractional friction with power-law memory kernel on string vibrations, Comput. Math. Appl., 62, 1554-1561 (2011) · Zbl 1228.35246
[63] Wilkie, K. P.; Drapaca, C. S.; Sivaloganathan, S., A nonlinear viscoelastic fractional derivative model of infant hydrocephalus, Appl. Math. Comput., 217, 8693-8704 (2011) · Zbl 1215.92036
[64] Wiman, A., Über den Fundamentalsatz in der Theorie der Funktionen \(E_\alpha(x)\), Acta. Math., 29, 191-201 (1905) · JFM 36.0471.01
[65] Yuste, S. B., Weighted average finite difference methods for fractional diffusion, J. Comput. Phys., 216, 264-274 (2006) · Zbl 1094.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.