×

An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics. (English) Zbl 07565883

Summary: In this paper, we aim to solve nonlinear system of generalized Abel integral equations arising in astrophysics. The suggested approach is operational matrix technique by using Legendre scaling functions as a basis. Convergence analysis of the suggested technique is provided. Numerical experiments are performed to show the effectiveness of the proposed scheme. The results are shown through figures and tables.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Lowengrub, M., (Gilbert, R. P.; Weinacht, R. J., System of Abel Type Integral Equations. System of Abel Type Integral Equations, Research Notes in Math (1976), Pitman Publishing), 277-296 · Zbl 0346.45009
[2] Walton, J., System of generalised Abel integral equations with applications to simultaneous dual relations, SIAM J. Math. Anal., 10, 808-822 (1979) · Zbl 0415.45003
[3] Mandal, N.; Chakrabarti, A.; Mandal, B. N., Solution of a system of generalized Abel integral equations using fractional calculus, Appl. Math. Lett., 9, 5, 1-4 (1996) · Zbl 0902.45004
[4] Pandey, R. K.; Mandal, B. N., Numerical solution of a system of generalised Abel integral equations using bernstein polynomials, J. Adv. Res. Sci. Comput., 2, 44-53 (2010)
[5] Singh, O. P.; Singh, V. K.; Pandey, R. K., A stable numerical inversion of Abel’s integral equation using almost Bernstein operational matrix, Spectrum Radiat. Trans., 111, 245-252 (2010)
[6] Yousefi, S. A., Numerical solution of Abel’s integral equation by using Legendre wavelets, Appl. Math. Comput., 175, 574-580 (2006) · Zbl 1088.65124
[7] Huang, L.; Huang, Y.; Li, Xian-Fang, Approximate solution of Abel integral equation, Comput. Math. Appl., 56, 1748-1757 (2008) · Zbl 1152.45307
[8] Biazar, J.; Ebrahimi, H., A new technique for systems of Abel-Volterra integral equations, Int. J. Phys. Sci., 7, 1, 89-99 (2012)
[9] Maleknejad, K.; Salimi, S. A., Numerical solution of singular Volterra integral equations system of convolution type by using operational matrices, Appl. Math. Comput., 195, 500-505 (2008) · Zbl 1132.65117
[10] Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S., A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave, J. Comput. Phys., 293, 142-156 (2015) · Zbl 1349.65504
[11] de la Hoz, F.; Vadillo, F., The solution of two dimensional advection-diffusion equation via operational matrices, Appl. Numer. Math., 72, 172-187 (2013) · Zbl 1302.65235
[12] urRehman, M.; Khan, R. A., Numerical solutions to initial and boundary value problems for linear fractional partial differential equations, Appl. Math. Model., 37, 5233-5244 (2013) · Zbl 1427.65299
[13] Singh, H., A new numerical algorithm for fractional model of bloch equation in nuclear magnetic resonance, Alex. Eng. J., 55, 2863-2869 (2016)
[14] Bhrawy, A. H.; Zaky, M. A., A method based on Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281, 876-895 (2015) · Zbl 1352.65386
[15] Wu, J. L., A wavelet operational method for solving fractional partial differential equations numerically, Appl. Math. Comput., 214, 31-40 (2009) · Zbl 1169.65127
[16] Singh, H., Operational matrix approach for approximate solution of fractional model of bloch equation, J. King Saud Univ.-Sci., 29, 235-240 (2016)
[17] Tohidi, E.; Bhrawy, A. H.; Erfani, K., A collocation method based on bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37, 4283-4294 (2013) · Zbl 1273.34082
[18] Kazem, S.; Abbasbandy, S.; Kumar, S., Fractional order legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37, 5498-5510 (2013) · Zbl 1449.33012
[19] Zhou, F.; Xu, X., Numerical solution of convection diffusions equations by the second kind Chebyshev wavelets, Appl. Math. Comput., 247, 353-367 (2014) · Zbl 1339.65198
[20] Singh, H.; Srivastava, H. M.; Kumar, D., A reliable algorithm for the approximate solution of the nonlinear Lane-Emden type equations arising in astrophysics, Numer. Methods Partial Differential Equations, 34, 5, 1524-1555 (2018) · Zbl 1407.85001
[21] Singh, H.; Srivastava, H. M.; Kumar, D., Reliable numerical algorithm for the fractional vibration equation, Chaos Solitons Fractals, 103, 131-138 (2017) · Zbl 1380.65207
[22] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Appl. Math. Comput., 59, 1326-1336 (2010) · Zbl 1189.65151
[23] Singh, C.; Singh, H.; Singh, V. K.; Singh, O. P., Fractional order operational matrix methods for fractional singular integro-differential equation, Appl. Math. Model., 40, 10705-10718 (2016) · Zbl 1443.65446
[24] Ravichandran, C.; Jothimani, K.; Baskonus, H. M., New results on nondensely characterized integrodifferential equations with fractional order, Eur. Phys. J. Plus, 133, 109, 1-10 (2018)
[25] Baskonus, H. M.; Gulnur, Y.; Bulut, H., Novel wave surfaces to the fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, AIP Conf. Proc., 1863, 560084, 1-6 (2017)
[26] Gencoglu, M. T.; Baskonus, H. M.; Bulut, H., Numerical simulations to the nonlinear model of interpersonal relationships with time fractional derivative, AIP Conf. Proc., 1798, 020103, 1-9 (2017)
[27] Kumar, D.; Singh, J.; Baskonus, H. M.; Bulut, H., An effective computational approach for solving local fractional telegraph equations, Nonlinear Sci. Lett. A, 8, 2, 200-206 (2017)
[28] Baskonus, H. M.; Bulut, H., On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton Method, Open Math., 13, 1, 547-556 (2015) · Zbl 1350.65077
[29] Khader, M. M.; Saad, K. M., A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method, Chaos Solitons Fractals, 110, 169-177 (2018) · Zbl 1448.65185
[30] Khader, M. M.; Saad, K. M., On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers equations, Eur. Phys. J. Plus, 133, 335 (2018)
[31] Khader, M. M.; Saad, K. M., A numerical study by using the chebyshev collocation method for a problem of biological invasion: Fractional fisher equation, Int. J. Biomath., 11, 8, 1850099 (2018) · Zbl 1405.92290
[32] Kumar, D.; Tchier, F.; Singh, J.; Baleanu, D., An efficient computational technique for fractal vehicular traffic flow, Entropy, 20, 4, 259 (2018)
[33] Kumar, D.; Singh, J.; Baleanu, D.; Rathore, S., Analysis of a fractional model of Ambartsumian equation, Eur. J. Phys. Plus, 133, 159 (2018)
[34] Singh, J.; Kumar, D.; Qurashi, M. A.; Baleanu, D., A novel numerical approach for a nonlinear fractional dynamical model of interpersonal and romantic relationships, Entropy, 19, 7, 375 (2017)
[35] Atangana, A.; Gómez-Aguilar, J. F., Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102, 285-294 (2017) · Zbl 1374.34296
[36] Atangana, A.; Gómez-Aguilar, J. F., Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133, 1-23 (2018)
[37] Atangana, A.; Gómez-Aguilar, J. F., New insight in fractional differentiation: power, ponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 132, 1-23 (2017)
[38] Atangana, A.; Gómez-Aguilar, J. F., A new derivative with normal distribution kernel: Theory, methods and applications, Physica A, 476, 1-14 (2017) · Zbl 1495.35182
[39] Singh, J., A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29, 013137 (2019) · Zbl 1406.91326
[40] Atangana, A.; Gómez-Aguilar, J. F., Fractional derivatives with no-index law property: application to chaos and statistics, Chaos Solitons Fractals, 114, 516-535 (2018) · Zbl 1415.34010
[41] Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Lopez-Lopez, G.; Alvarado, V.; Guerrero-Ramírez, G., Triple pendulum model involving fractional derivatives with different kernels, Chaos Solitons Fractals, 91, 248-261 (2016) · Zbl 1372.70049
[42] Singh, J.; Kumar, D.; Baleanu, D.; Rathore, S., An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335, 12-24 (2018) · Zbl 1427.65324
[43] Kumar, D.; Singh, J.; Baleanu, D.; Sushila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A, 492, 155-167 (2018) · Zbl 1514.35463
[44] Singh, J.; Kumar, D.; Baleanu, D.; Sushila, On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci. (2019) · Zbl 1419.35226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.