×

A method for generating moving, orthogonal, area preserving polygonal meshes. (English) Zbl 07518049

Summary: A new method for generating locally orthogonal polygonal meshes from a set of generator points is presented in which polygon areas are a constraint. The area constraint property is particularly useful for particle methods where moving polygons track a discrete portion of material. Because Voronoi polygon meshes have some very attractive mathematical and numerical properties for numerical computation, a generalization of Voronoi polygon meshes was formulated that enforces a polygon area constraint. Area constrained moving polygonal meshes allow one to develop hybrid particle-mesh numerical methods that display some of the most attractive features of each approach. It is shown that this mesh construction method can continuously reconnect a moving, unstructured polygonal mesh in a pseudo-Lagrangian fashion without change in cell area/volume, and the method’s ability to simulate various physical scenarios is shown. The advantages are identified for incompressible fluid flow calculations, with demonstration cases that include material discontinuities of all three phases of matter and large density jumps.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Dxx Numerical approximation and computational geometry (primarily algorithms)

Software:

ReALE; Triangle

References:

[1] Gomez-Gesteira, M.; Rogers, B. D.; Dalrymple, R. A.; Crespo, A. J., State-of-the-art of classical SPH for free-surface flows, J. Hydraul. Res., 48, 6-27 (2010)
[2] Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574 (1992)
[3] Monaghan, J. J., An introduction to SPH, Comput. Phys. Commun., 48, 89-96 (1988) · Zbl 0673.76089
[4] Fulk, D. A.; Quinn, D. W., An analysis of 1-d smoothed particle hydrodynamics kernels, J. Comput. Phys., 126, 165-180 (1996) · Zbl 0853.76060
[5] Sigalotti, L. D.G.; Klapp, J.; Rendón, O.; Vargas, C. A.; Peña-Polo, F., On the kernel and particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 108, 242-255 (2016) · Zbl 1381.76280
[6] Serrano, M.; Español, P., Thermodynamically consistent mesoscopic fluid particle models for a van der Waals fluid (2000), preprint
[7] Brackbill, J., FLIP MHD: a particle-in-cell method for magnetohydrodynamics, J. Comput. Phys., 96, 163-192 (1991) · Zbl 0726.76078
[8] Stomakhin, A.; Schroeder, C.; Chai, L.; Teran, J.; Selle, A., A material point method for snow simulation, ACM Trans. Graph., 32, 102 (2013) · Zbl 1305.68280
[9] Zhu, Y.; Bridson, R., Animating sand as a fluid, (ACM Transactions on Graphics (TOG), vol. 24 (2005), ACM), 965-972
[10] Jiang, C.; Schroeder, C.; Selle, A.; Teran, J.; Stomakhin, A., The affine particle-in-cell method, ACM Trans. Graph. (TOG), 34, 51 (2015) · Zbl 1334.68253
[11] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253 (1974) · Zbl 0292.76018
[12] Margolin, L. G., Introduction to an arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 135, 198-202 (1997) · Zbl 0938.76067
[13] Kucharik, M.; Shashkov, M., Conservative multi-material remap for staggered multi-material arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 258, 268-304 (2014) · Zbl 1349.76493
[14] Barlow, A. J., A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J. Numer. Methods Fluids, 56, 953-964 (2008) · Zbl 1169.76030
[15] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227, 5361-5384 (2008) · Zbl 1220.76048
[16] Dukowicz, J. K.; Cline, M. C.; Addessio, F. L., A general topology Godunov method, J. Comput. Phys., 82, 29-63 (1989) · Zbl 0665.76032
[17] Gaburro, E.; Dumbser, M.; Castro, M. J., Direct arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes, Comput. Fluids, 159, 254-275 (2017) · Zbl 1390.76433
[18] Gaburro, E.; Boscheri, W.; Chiocchetti, S.; Klingenberg, C.; Springel, V.; Dumbser, M., High order direct arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes, J. Comput. Phys., 407, Article 109167 pp. (2020) · Zbl 07504692
[19] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[20] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 4724-4761 (2010) · Zbl 1305.76067
[21] Loubère, R.; Maire, P.-H.; Shashkov, M., ReALE: a reconnection arbitrary-Lagrangian-Eulerian method in cylindrical geometry, Comput. Fluids, 46, 59-69 (2011) · Zbl 1305.76066
[22] Bo, W.; Shashkov, M., Adaptive reconnection-based arbitrary Lagrangian Eulerian method, J. Comput. Phys., 299, 902-939 (2015) · Zbl 1352.65602
[23] Bo, W.; Shashkov, M., R-adaptive reconnection-based arbitrary Lagrangian Eulerian method-R-ReALE, J. Math. Study, 48, 125-167 (2015) · Zbl 1363.65154
[24] Shewchuk, J. R., Delaunay refinement algorithms for triangular mesh generation, Comput. Geom., 22, 21-74 (2002) · Zbl 1016.68139
[25] Kühnlein, C.; Deconinck, W.; Klein, R.; Malardel, S.; Piotrowski, Z. P.; Smolarkiewicz, P. K.; Szmelter, J.; Wedi, N. P., Fvm 1.0: a nonhydrostatic finite-volume dynamical core for the ifs, Geosci. Model Dev., 12, 651-676 (2019)
[26] Campbell, J. C.; Shashkov, M. J., A compatible Lagrangian hydrodynamics algorithm for unstructured grids, Selçuk J. Appl. Math., 4, 53-70 (2003) · Zbl 1150.76433
[27] Li, J.; Kuo, C.-C., A dual graph approach to 3d triangular mesh compression, (Proceedings 1998 International Conference on Image Processing, ICIP98 (Cat. No. 98CB36269), vol. 2 (1998), IEEE), 891-894
[28] Codecasa, L.; Minerva, V.; Politi, M., Use of barycentric dual grids for the solution of frequency domain problems by fit, IEEE Trans. Magn., 40, 1414-1419 (2004)
[29] Du, Q.; Emelianenko, M.; Ju, L., Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations, SIAM J. Numer. Anal., 44, 102-119 (2006) · Zbl 1115.65017
[30] Du, Q.; Faber, V.; Gunzburger, M., Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev., 41, 637-676 (1999) · Zbl 0983.65021
[31] Tournois, J.; Alliez, P.; Devillers, O., 2d centroidal Voronoi tessellations with constraints, Numer. Math. Theory Methods Appl., 3, 212-222 (2010) · Zbl 1224.65053
[32] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 1030-1037 (1979) · Zbl 0436.76025
[33] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174, 669-694 (2001) · Zbl 1157.76372
[34] Aurenhammer, F., Voronoi diagrams survey of a fundamental geometric data structure, ACM Comput. Surv. (CSUR), 23, 345-405 (1991)
[35] Mikhailova, N.; Tishkin, V. F.; Tyurina, N. N.; Favorskii, A.; Shashkov, M. Y., Numerical modelling of two-dimensional gas-dynamic flows on a variable-structure mesh, USSR Comput. Math. Math. Phys., 26, 74-84 (1986) · Zbl 0636.76067
[36] Perot, J. B.; Zusi, C. J., Differential forms for scientists and engineers, J. Comput. Phys., 257, 1373-1393 (2014) · Zbl 1351.53001
[37] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227 (2014) · Zbl 1352.65420
[38] Nallapati, R.; Perot, J., Numerical simulation of free-surface flows using a moving unstructured mesh, (Proceedings of ASME FEDSM (2000))
[39] Perot, J. B.; Chartrand, C., A mimetic method for polygons, J. Comput. Phys., 424, Article 109853 pp. (2020) · Zbl 07508458
[40] Chang, W.; Giraldo, F.; Perot, B., Analysis of an exact fractional step method, J. Comput. Phys., 180, 183-199 (2002) · Zbl 1130.76394
[41] Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 108, 51-58 (1993) · Zbl 0778.76064
[42] Drazin, P. G.; Riley, N., The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, vol. 334 (2006), Cambridge University Press · Zbl 1154.76019
[43] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 158, 499-521 (1937) · JFM 63.1358.03
[44] Kunugi, T.; Hara, K.; Nagatake, T.; Kawara, Z., Reconsideration of scaling measure for liquid-column break problem, (AIP Conference Proceedings, vol. 1547 (2013), American Institute of Physics), 280-288
[45] Martin, J. C.; Moyce, W. J.; Martin, J.; Moyce, W.; Penney, W. G.; Price, A.; Thornhill, C., Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 244, 312-324 (1952) · Zbl 0046.19807
[46] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 421-434 (1996)
[47] Hu, C.; Sueyoshi, M., Numerical simulation and experiment on dam break problem, J. Mar. Sci. Appl., 9, 109-114 (2010)
[48] Jančík, P.; Hyhlík, T., Pressure evaluation during dam break using weakly compressible SPH, EPJ Web Conf., 213, Article 02030 pp. (2019), EDP Sciences
[49] Sun, P.; Le Touzé, D.; Zhang, A.-M., Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR, Eng. Anal. Bound. Elem., 104, 240-258 (2019) · Zbl 1464.76160
[50] Fragassa, C.; Topalovic, M.; Pavlovic, A.; Vulovic, S., Dealing with the effect of air in fluid structure interaction by coupled SPH-FEM methods, Materials, 12, 1162 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.