×

Spectral and modal energy transfer analyses of LES using the discontinuous Galerkin method and their application to the variational multiscale approach. (English) Zbl 07510238

Summary: In this work we perform a-priori analyses of the Discontinuous Galerkin (DG) Variational Multiscale (VMS) method for Large Eddy Simulation (LES). An analytical framework is introduced to study the ideal energy transfer between resolved and unresolved scales. The proposed framework is consistent with the discretization employed for the DG-LES simulations. The concept of modal eddy viscosity is also introduced which can be employed for the a-priori analysis of the DG-VMS method or spectral vanishing viscosity approaches. The developed framework is then applied to the analysis of the energy transfer in DG-LES by employing a DNS database of the Taylor-Green Vortex (TGV) at \(Re = 5\,000\), 20000 and 40000. A-priori analyses are carried out for the A. W. Vreman [Phys. Fluids 15, No. 8, 4 p. (2003; Zbl 1186.76552)] and all-all [J. B. Chapelier et al., Comput. Methods Appl. Mech. Eng. 307, 275–299 (2016; Zbl 1436.76021)] variants of the DG-VMS approach. The performed analysis demonstrates that when the DG-LES resolution limit falls at the beginning of the dissipation range the assumption of large scales free of interaction with the unresolved scales is valid and the DG-VMS approach can replicate the ideal SGS dissipation spectrum. For coarser resolutions, typical of LES at high Reynolds numbers, the DG-VMS approach is unable to replicate the ideal energy transfer mechanism at the large-resolved scales. It is shown, a-priori, that a more accurate agreement can be obtained by employing a mixed Smagorinsky and DG-VMS approach with a fixed value of the scale-fraction parameter.

MSC:

80-XX Classical thermodynamics, heat transfer
76-XX Fluid mechanics

Software:

FFTW

References:

[1] Vreman, A., The filtering analog of the variational multiscale method in large-eddy simulation, Phys. Fluids, 15, 8, L61-L64 (2003) · Zbl 1186.76552
[2] Chapelier, J.-B.; de la Llave Plata, M.; Lamballais, E., Development of a multiscale LES model in the context of a modal discontinuous Galerkin method, Comput. Method Appl. M., 307, 275-299 (2016) · Zbl 1436.76021
[3] Rogallo, R. S.; Moin, P., Numerical simulation of turbulent flows, Annu. Rev. Fluid Mech., 16, 1, 99-137 (1984) · Zbl 0604.76040
[4] Lesieur, M.; Métais, O.; Comte, P., Large-Eddy Simulations of Turbulence (2005), Cambridge University Press · Zbl 1101.76002
[5] Sagaut, P., Large Eddy Simulation for Incompressible Flows: an Introduction (2006), Springer Science & Business Media
[6] Heisenberg, W., On the theory of statistical and isotropic turbulence, P. Roy. Soc. Lond. A. Mat., 195, 1042, 402-406 (1948) · Zbl 0035.25605
[7] Kraichnan, R. H., Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33, 1521-1536 (1976)
[8] Domaradzki, J. A.; Liu, W.; Brachet, M. E., An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence, Phys. Fluids A, 5, 1747-1759 (1993) · Zbl 0782.76043
[9] McComb, D.; Young, A., Explicit-scales projections of the partitioned non-linear term in direct numerical simulation of the Navier-Stokes equation, (Second Monte Verita Colloquium on Fundamental Problematic Issues in Fluid Turbulence (1998))
[10] Métais, O.; Lesieur, M., Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., 239, 157-194 (1992) · Zbl 0825.76272
[11] Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 3, 99-164 (1963)
[12] Jeanmart, H.; Winckelmans, G., Investigation of eddy-viscosity models modified using discrete filters: a simplified “regularized variational multiscale model” and an “enhanced field model”, Phys. Fluids, 19, 5, Article 055110 pp. (2007) · Zbl 1146.76426
[13] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, Fluid Dyn., 3, 7, 1760-1765 (1991) · Zbl 0825.76334
[14] Hughes, T. J.R.; Wells, G. N.; Wray, A. A., Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: comparison of dynamic Smagorinsky and multiscale models over a range of discretizations, Phys. Fluids, 16, 11, 4044-4052 (2004) · Zbl 1187.76226
[15] Hughes, T. J.R.; Mazzei, L.; Jansen, K. E., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 47-59 (2000) · Zbl 0998.76040
[16] Gravemeier, V., The variational multiscale method for laminar and turbulent flow, Arch. Comput. Methods Eng., 13, 2, 249 (2006) · Zbl 1177.76341
[17] Ahmed, N.; Chacón Rebollo, T.; John, V.; Rubino, S., A review of Variational Multiscale Methods for the simulation of turbulent incompressible flows, Arch. Comput. Methods Eng., 24, 115-164 (2017) · Zbl 1360.76105
[18] Rasthofer, U.; Gravemeier, V., Recent developments in Variational Multiscale Methods for large-eddy simulation of turbulent flow, Arch. Comput. Methods Eng., 1-44 (2017)
[19] Collis, S. S., Monitoring unresolved scales in multiscale turbulence modelling, Phys. Fluids, 13, 6, 1800-1806 (2001) · Zbl 1184.76110
[20] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[21] Leslie, D.; Quarini, G., The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech., 91, 1, 65-91 (1979) · Zbl 0411.76045
[22] Cerutti, S.; Meneveau, C.; Knio, O. M., Spectral and hyper eddy viscosity in high-Reynolds-number turbulence, J. Fluid Mech., 421, 307-338 (2000) · Zbl 0958.76507
[23] Lamballais, E.; Dairay, T.; Laizet, S.; Vassilicos, J., Implicit/explicit spectral viscosity and large-scale SGS effects, (Direct and Large-Eddy Simulation XI (2019), Springer), 107-113
[24] Hughes, T. J.; Mazzei, L.; Oberai, A. A.; Wray, A. A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 2, 505-512 (2001) · Zbl 1184.76236
[25] Holmen, J.; Hughes, T. J.; Oberai, A. A.; Wells, G. N., Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow, Phys. Fluids, 16, 3, 824-827 (2004) · Zbl 1186.76234
[26] Ramakrishnan, S.; Collis, S. S., Partition selection in multiscale turbulence modelling, Phys. Fluids, 18, Article 075105 pp. (2006) · Zbl 1185.76728
[27] Sagaut, P.; Levasseur, V., Sensitivity of spectral variational multiscale methods for large-eddy simulation of isotropic turbulence, Phys. Fluids, 17, Article 035113 pp. (2005) · Zbl 1187.76456
[28] Meyers, J.; Sagaut, P., Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows, Phys. Fluids, 19, 9, Article 095105 pp. (2007) · Zbl 1182.76514
[29] Lilly, D. K., The representation of small-scale turbulence in numerical simulation experiments, (IBM Scientific Computing Symposium on Environmental Sciences (1966))
[30] Meyers, J.; Sagaut, P., On the model coefficients for the standard and the variational multi-scale Smagorinsky model, J. Fluid Mech., 569, 287-319 (2006) · Zbl 1165.76354
[31] Cocle, R.; Bricteux, L.; Winckelmans, G., Scale dependence and asymptotic very high Reynolds number spectral behavior of multiscale subgrid models, Phys. Fluids, 21, 8, Article 085101 pp. (2009) · Zbl 1183.76153
[32] Bricteux, L.; Duponcheel, M.; Winckelmans, G., A multiscale subgrid model for both free vortex flows and wall-bounded flows, Phys. Fluids, 21, 10, Article 105102 pp. (2009) · Zbl 1183.76113
[33] Pope, S., Large-eddy simulation using projection onto local basis functions, (Lect. Notes Phys. (2001), Springer), 239-265 · Zbl 1052.76032
[34] Vreman, A., The adjoint filter operator in large-eddy simulation of turbulent flow, Phys. Fluids, 16, 6, 2012-2022 (2004) · Zbl 1186.76553
[35] Collis, S., The DG/VMS method for unified turbulence simulation, (32nd AIAA Fluid Dynamics Conference and Exhibit (2002)), 3124
[36] Beck, A. D.; Flad, D. G.; Munz, C.-D., Neural networks for data-based turbulence models (2018), preprint
[37] van der Bos, F.; Geurts, B. J., Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence, Comput. Method Appl. M., 199, 13-16, 903-915 (2010) · Zbl 1406.76039
[38] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26 (1977), Siam · Zbl 0412.65058
[39] Carati, D.; Winckelmans, G. S.; Jeanmart, H., On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation, J. Fluid Mech., 441, 119-138 (2001) · Zbl 1097.76567
[40] Winckelmans, G. S.; Wray, A. A.; Vasilyev, O. V.; Jeanmart, H., Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term, Phys. Fluids, 13, 5, 1385-1403 (2001) · Zbl 1184.76594
[41] de la Llave Plata, M.; Lamballais, E.; Naddei, F., On the performance of a high-order multiscale DG approach to LES at increasing Reynolds number, Comput. Fluids, 194, Article 104306 pp. (2019)
[42] De Wiart, C. C.; Hillewaert, K.; Bricteux, L.; Winckelmans, G., Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method, Int. J. Numer. Methods Fluids, 78, 6, 335-354 (2015)
[43] Karamanos, G.; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 1, 22-50 (2000) · Zbl 0984.76036
[44] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., Design of a Smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods, Comput. Fluids, Article 104440 pp. (2020) · Zbl 1519.76095
[45] Oberai, A. A.; Gravemeier, V.; Burton, G. C., Transfer of energy in the variational multiscale formulation of LES, (Proceedings of the 2004 Summer Program (2004))
[46] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[47] Bassi, F.; Crivellini, A.; Rebay, S.; Savini, M., Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations, Comput. Fluids, 34, 4-5, 507-540 (2005) · Zbl 1138.76043
[48] Flad, D.; Gassner, G., On the use of kinetic energy preserving DG-schemes for large eddy simulation, J. Comput. Phys., 350, 782-795 (2017) · Zbl 1380.76019
[49] Stolz, S.; Schlatter, P.; Kleiser, L., High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow, Phys. Fluids, 17, 6, Article 065103 pp. (2005) · Zbl 1187.76501
[50] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S., On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence, J. Comput. Phys., 330, 615-623 (2017) · Zbl 1378.76036
[51] Meyers, J.; Sagaut, P.; Geurts, B. J., Optimal model parameters for multi-objective large-eddy simulations, Phys. Fluids, 18, 9, Article 095103 pp. (2006) · Zbl 1185.76727
[52] Naddei, F., Adaptive large eddy simulations based on discontinuous Galerkin methods (2019), Paris Saclay, Ph.D. thesis
[53] Naddei, F.; de la Llave Plata, M.; Lamballais, E.; Couaillier, V.; Massot, M.; Ihme, M., Large-scale space definition for the DG-VMS method based on energy transfer analyses, (Proceedings of the 2018 Summer Program (2018))
[54] Wang, Z.; Oberai, A., A mixed large eddy simulation model based on the residual-based variational multiscale formulation, Phys. Fluids, 22, 7, Article 075107 pp. (2010)
[55] Leonard, A.; Leonard, A., Large-eddy simulation of chaotic convection and beyond, (35th Aerospace Sciences Meeting and Exhibit (1997)), 204
[56] Bardina, J.; Ferziger, J. H.; Reynolds, W. C., Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible Turbulent Flows (1983), Dept. Mech. Stanford Univ.
[57] Frigo, M.; Johnson, S. G., The design and implementation of FFTW3, Proc. IEEE, 93, 2, 216-231 (2005), special issue on “Program Generation, Optimization, and Platform Adaptation”
[58] Lee, J.-Y.; Greengard, L., The type 3 nonuniform FFT and its applications, J. Comput. Phys., 206, 1, 1-5 (2005) · Zbl 1072.65170
[59] Fan, G.-X.; Liu, Q. H., Fast Fourier transform for discontinuous functions, IEEE Trans. Antennas Propag., 52, 2, 461-465 (2004) · Zbl 1368.65266
[60] Zhu, C.-H.; Liu, Q. H.; Shen, Y.; Liu, L., A high accuracy conformal method for evaluating the discontinuous Fourier transform, Prog. Electromagn. Res., 109, 425-440 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.