×

A smoothed GFEM based on Taylor expansion and constrained MLS for analysis of Reissner-Mindlin plate. (English) Zbl 07488888

Summary: Based on the Taylor Expansion and constrained moving least square function, a smoothed GFEM (SGFEM) is proposed in this paper for static, free vibration and buckling analysis of Reissner-Mindlin plate. The displacement function based on SGFEM is composed of classical linear finite element shape function and nodal displacement function, which are obtained by introducing the gradient smoothed meshfree approximation in Taylor expansion of nodal displacement function. A constrained moving least square function is proposed for constituting meshfree nodal displacement function. The merits of the proposed SGFEM, including high accuracy, rapid error convergence, insensitive to mesh distortion, free of shear-locking problem, no extra DOFs and temporal stability, etc., are demonstrated by several typical examples and comparisons with other numerical methods.

MSC:

74-XX Mechanics of deformable solids
65-XX Numerical analysis

Software:

FEAPpv
Full Text: DOI

References:

[1] Babuška, I. and Melenk, J. M. [1997] “ The partition of unity method,” Int. J. Numer. Methods Eng.40(4), 727-758. · Zbl 0949.65117
[2] Babuska, I and Melenk, J. M. [1997] “ Partition of unity method,” Int. J. Numer. Methods Eng.40, 727. · Zbl 0949.65117
[3] Bathe, K. J. and Dvorkin, E. N. [1986] “ A formulation of general shell elements—the use of mixed interpolation of tensorial components,” Int. J. Numer. Methods Eng.22(3), 697-722. · Zbl 0585.73123
[4] Beissel, S. and Belytschko, T. [1996] “ Nodal integration of the elementfree Galerkin method,” Comput. Methods Appl. Mech. Eng.139, 49-74. · Zbl 0918.73329
[5] Belytschko, T., Stolarski, H. and Carpenter, N. [1984] “ A C0 triangular plate element with one-point quadrature,” Int. J. Numer. Methods Eng.20, 787-802. · Zbl 0528.73069
[6] Belytschko, T., Lu, Y. Y. and Gu, L. [1994] “ Element-free Galerkin methods,” Int. J. Numer. Methods Eng.37(2), 229-256. · Zbl 0796.73077
[7] Bischoff, M. and Bletzinger, K. U. [2001] “Stabilized DSG plate and shell elements,” Trends in Computational Structural Mechanics. CIMNE, Barcelona, Spain.
[8] Bletzinger, K. U., Bischoff, M. and Ramm, E. [2000] “ A unified approach for shear-locking-free triangular and rectangular shell finite elements,” Comput. Struct.75, 321-334.
[9] Cardoso, R. P. R.et al. [2008] “ Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements,” Int. J. Numer. Methods Eng.75, 156-187. · Zbl 1195.74165
[10] Cesar de Sa, J. M. A. and Natal Jorge, R. M. [1999] “ New enhanced strain elements for incompatible problems,” Int. J. Numer. Methods Eng.44, 229-248. · Zbl 0937.74062
[11] Chapelle, D. and Suarez, I. P. [2008] “ Detailed reliability assessment of triangular MITC elements for thin shells,” Comput. Struct.86(23-24), 2192-2202.
[12] Chen, W. J. and Cheung, Y. K. [2001] “ Refined 9-Dof triangular Mindin plate elements,” Int. J. Numer. Methods Eng.51, 1259-1281 · Zbl 1065.74606
[13] Chen, W. J. [2004] “ Refined 15-DOF triangular discrete degenerated shell element,” Int. J. Numer. Methods Eng.60, 1817-1846 · Zbl 1060.74646
[14] Chen, G. S. [2018] “ Smoothed FE-Meshfree method for solid mechanics problems,” Acta Mech.229, 2597-2618. · Zbl 1392.74085
[15] Chen, G. S.et al. [2019] “ A gradient stable node-based smoothed finite element method for solid mechanics problems,” Shock Vib.2019, 1-24.
[16] Dong, S.et al. [2021] “ Robust circular marker localization under non-uniform illuminations based on homomorphic filtering,” Measurement170, 108700.
[17] Duarte, C. A., Babuška, I. and Oden, J. T. [2000] “ Generalized finite element methods for three-dimensional structural mechanics problems,” Comput. Struct.77(2), 215-232.
[18] Duarte, C. A. and Kim, D. J. [2008] “ Analysis and applications of a generalized finite element method with global-local enrichment functions,” Comput. Methods Appl. Mech. Eng.197(6-8), 487-504. · Zbl 1169.74597
[19] Feng, S. Z., Cui, X. Y. and Li, G. Y. [2013] “ Analysis of transient thermo-elastic problems using edge-based smoothed finite element method,” Int. J. Thermal Sci.65, 127-135.
[20] Feng, S. Z., Cui, X. Y. and Li, G. Y. [2013] “ Transient thermal mechanical analyses using a face based smoothed finite element method (FS-FEM),” Int. J. Therm. Sci.74, 95-103.
[21] Feng, H.et al. [2014] “ A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems,” Comput. Mech.53(5), 859-876. · Zbl 1398.74462
[22] Gingold, R. A. and Monaghan, J. J. [1977] “ Smoothed particle hydrodynamics: Theory and application to non-spherical stars,” Month. Not. R. Astron. Soc.181(3), 375-389. · Zbl 0421.76032
[23] He, Z. C.et al. [2014] “ MID-frequency acoustic analysis using edge-based smoothed tetrahedron radial point interpolation methods,” Int. J. Comput. Methods11(5), 1350103. · Zbl 1359.76255
[24] Kim, J. H. and Kim, Y. H. [2002] “ Three-node macro triangular shell element based on the assumed natural trains,” Comput. Mech.29, 441-458. · Zbl 1146.74361
[25] Kirchhoff, G. [1850] “ Uber das Gleichgewicht und die Bewegung einer elastichen Scheibe,” Journal fur die reine und Angewandte Mathematik40, 51-88. · ERAM 040.1086cj
[26] Kitipornchai, S.et al. [1993] “ Buckling of thick skew plates,” Int. J. Numer. Methods Eng.36(8), 1299-1310. · Zbl 0772.73042
[27] Lancaster, P. and Salkauskas, K. [1981] “ Surfaces generated by moving least squares methods,” Math. Comput.37, 141-158. · Zbl 0469.41005
[28] Lee, P. S. and Bathe, K. J. [2004] “ Development of MITC isotropic triangular shell finite elements,” Comput. Struct.82(11-12), 945-962.
[29] Leissa, A. W. [1969] Vibration of Plates (NASA, SP-160, Washington DC).
[30] Li, Q. B. E, He, Z. C., Wang, G. and Liu, G. R. [2008] “ An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals,” Comput. Methods Appl. Mech. Eng.2018(333), 421-442. · Zbl 1440.74416
[31] Li, E.Head, Z. C. and Wang, G. [2016] “ An exact solution to compute the band gap in phononic crystals,” Int. J. Thermal Sci.2016(122), 72-85.
[32] Li, E., He, Z. C., Hu, J. Y. and Long, X. Y. [2017] “ SCEDT EngineeringVolumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials,” Comput. Methods Appl. Mech. Eng.2017(324), 128-148. · Zbl 1439.74137
[33] Li, Q. B. E, He, Z. C., Wang, G. and Liu, G. R. [2017] “ An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion,” Comput. Mech.2017, 1-14.
[34] Li, S., Zhang, J. and Cui, X. [2019] “ Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap,” Acta Mech.230(10), 3571-3591. · Zbl 1428.74148
[35] Li, E. and He, Z. C. [2019] “ Optimal balance between mass and smoothed stiffness in simulation of acoustic problems,” Appl. Math. Mod.2019(75), 1-22. · Zbl 1481.76191
[36] Liew, K. M.et al. [2004] “ Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method,” J. Sound Vib.276(3-5), 997-1017.
[37] Liu, W. K., Jun, S. and Zhang, Y. F. [1995] “ Reproducing kernel particle methods,” Int. J. Numer. Methods Fluids20(8-9), 1081-1106. · Zbl 0881.76072
[38] Liu, G. R., Nguyen, T. T. and Lam, K. Y. [2008] “ A novel alpha finite element method \(( \alpha\) FEM) for exact solution to mechanics problems using triangular and tetrahedral elements,” Comput. Methods Appl. Mech. Eng.197(45), 3883-3897. · Zbl 1194.74433
[39] Liu, G. R., Nguyen, T. T. and Lam, K. Y. [2009] “ An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids,” J. Sound Vib.320(4), 1100-1130.
[40] Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K. Y. [2009] “ A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems,” Comput. Struct.87, 14-26.
[41] Liu, G. R. and Gu, X. T. [2005] An Introduction to Meshfree Methods and Their Programming (Springer, New York, 2005).
[42] Liu, G. R. and Nguyen-Thoi, T. [2010] Smoothed Finite Element Methods (CRC Press, 2010).
[43] Liu, G. R. [2008] “ A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods,” Int. J. Comput. Methods5(2), 199-236. · Zbl 1222.74044
[44] Liu, G. R. [2016] “ An overview on meshfree methods: For computational solid mechanics,” Int. J. Comput. Methods13, 1-42. · Zbl 1359.74388
[45] Lyly, M., Stenberg, R. and Vihinen, T. [1993] “ A stable bilinear element for the Reissner-Mindlin plate model,” Comput. Methods Appl. Mech. Eng.110(3-4), 343-357. · Zbl 0846.73065
[46] Ma, J.et al. [2021] A data-driven normal contact force model based on artificial neural network for complex contacting surfaces, Mech. Syst. Signal Process.153, 107612.
[47] Ma, J.et al. [2020] “ A general methodology to establish the contact force model for complex contacting surfaces,” Mech. Syst. Signal Process.140, 106678.
[48] Melenk, J. M. and Babuška, I. [1996] “ The partition of unity finite element method: Basic theory and applications,” Comput. Methods Appl. Mech. Eng.139(1-4), 289-314. · Zbl 0881.65099
[49] Mindlin, R. D. [1951] “ Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates,” J. Appl. Mech.18(1), 31-38. · Zbl 0044.40101
[50] Moës, N., Dolbow, J. and Belytschko, T. [1999] “ A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng.46(1), 131-150. · Zbl 0955.74066
[51] Nguyen-Xuan, H.et al. [2010] “ An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates,” Comput. Methods Appl. Mech. Eng.199, 471-489. · Zbl 1227.74083
[52] Ooi, E. T.et al. [2007] “ A mesh distortion tolerant 8-node solid element based on the partition of unity method with inter-element compatibility and completeness properties,” Finite Elem. Anal. Des.43, 771-787.
[53] Pereira, E. M. B. R. and Freitas, J. A. T. [1996] “ A hybrid-mixed finite element model based on Legendre polynomials for Reissner-Mindlin plates,” Comput. Methods Appl. Mech. Eng.136, 111-126. · Zbl 0891.73069
[54] Pugh, E. D., Hinton, E. and Zienkiewicz, O. C. [1978] “ A study of triangular plate bending element with reduced integration,” Int. J. Numer. Methods Eng.12, 1059-1078. · Zbl 0377.73065
[55] Rajendran, S. and Zhang, R. B. [2007] “ A “FE-Meshfree” QUAD4 element based on partition of unity,” Comput. Methods Appl. Mech. Eng.197, 128-147. · Zbl 1169.74628
[56] Rajendran, S.et al. [2009] “ A partition of unity-based ‘FE-Meshfree’ QUAD4 element for geometric non-linear analysis,” Comput. Methods Appl. Mech. Eng.82, 1574-1608. · Zbl 1188.74069
[57] Reissner, E. [1945] “ The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech.12(3), 69-76. · Zbl 0063.06470
[58] Simo, J. C. and Rifai, M. S. [1990] “ A class of mixed assumed strain methods and the method of incompatible modes,” Int. J. Numer. Methods Eng.29, 1595-1638. · Zbl 0724.73222
[59] Strouboulis, T., Babuška, I. and Copps, K. [2000] “ The design and analysis of the generalized finite element method,” Comput. Methods Appl. Mech. Eng.181(1-3), 43-69. · Zbl 0983.65127
[60] Strouboulis, T., Hidajat, R. and Babuška, I. [2008] “ The generalized finite element method for Helmholtz equation. Part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment,” Comput. Methods Appl. Mech. Eng.197(5), 364-380. · Zbl 1169.76397
[61] Taylor, R. L, Zienkiewicz, O. C. and Onate, E. [1998] “ A hierarchical finite element method based on the partition of unity,” Comput. Methods Appl. Mech. Eng.152, 73-84. · Zbl 0968.74072
[62] Tham, L. G. and Szeto, H. Y. [1990] “ Buckling analysis of arbitrarily shaped plates by spline finite strip method,” Comput. Struct.36(4), 729-735.
[63] Tian, R., Yagawa, G. and Terasaka, H. [2006] “ Linear dependence problems of partition of unity-based generalized FEMs,” Comput. Methods Appl. Mech. Eng.195(37-40), 4768-4782. · Zbl 1125.65073
[64] Tian, R. [2013] “ Extra-dof-free and linearly independent enrichments in GFEM,” Comput. Methods Appl. Mech. Eng.266, 1-22. · Zbl 1286.74110
[65] Timoshenko, S. P. and Goodierwrited, J. N. [1970] Theory of Elasticity, 3rd edn. (McGraw-Hill Book Company). · Zbl 0266.73008
[66] Wang, J. G. and Liu, G. R. [2002] “ A point interpolation meshless method based on radial basis functions,” Int. J. Numer. Methods Eng.54, 1623-1648. · Zbl 1098.74741
[67] Wang, G.et al. [2015] “ Temporal stabilization nodal integration method for static and dynamic analyses of Reissner-Mindlin plates,” Comput. Struct.152, 125-141.
[68] Wu, F. [2014] “ A new hybrid smoothed FEM for static and free vibration analyses of Reissner-Mindlin Plates,” Comput. Mech.54(3), 865-890. · Zbl 1311.74131
[69] Wu, F. [2014] “ A new hybrid smoothed FEM for static and free vibration analyses of Reissner-Mindlin Plates,” Comput. Mech.54, 865-890. · Zbl 1311.74131
[70] Xu, J. P. and Rajendran, S. [2011] “ A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses,” Comput. Methods Appl. Mech. Eng.200(47-48), 3309-3323. · Zbl 1230.74203
[71] Yang, Y. T.et al. [2014] “ A three-node triangular element with continuous nodal stress,” Comput. Struct.141, 46-58.
[72] Yang, Y. T.et al. [2016] “ A partition-of-unity based ‘FE-Meshfree’ triangular element with radial-polynomial basis functions for static and free vibration analysis,” Eng. Anal. Boundary Elements65, 18-38. · Zbl 1403.65146
[73] Yang, G.et al. [2017] “ An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner-Mindlin plate,” Appl. Math. Mod.51, 477-504. · Zbl 1480.74134
[74] Yang, Y. T.et al. [2017] “ A partition-of-unity based ‘FE-Meshfree’ hexahedral element with continuous nodal stress,” Comput. Struct.178, 17-28.
[75] Zhang, B. R. and Rajendran, S. [2008] “ “FE-Meshfree” QUAD4 element for free vibration analysis,” Comput. Methods Appl. Mech. Eng.197, 3595-3604. · Zbl 1194.74489
[76] Zhang, G. Y.et al. [2018] “ A combination of singular cell-based smoothed radial point interpolation method and FEM in solving fracture problem,” Int. J. Comput. Methods15, 1-22. · Zbl 1404.74179
[77] Zienkiewicz, O. C., Taylor, R. L. and Fox, D. D. [2014] The Finite Element Method for Solid and Structural Mechanics, 7th edn. (Elsevier Ltd., Oxford). · Zbl 1307.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.