×

Robust preconditioning techniques for multiharmonic finite element method with application to time-periodic parabolic optimal control problems. (English) Zbl 07400549

Summary: We are concerned with efficient solutions of the time-periodic parabolic optimal control problems. By using the multiharmonic FEM, the linear algebraic equations characterizing the first-order optimality conditions can be decoupled into a series of parallel solvable block \(4 \times 4\) linear systems with respect to the cosine and sine Fourier coefficients of the state and scaled control variables for different frequencies. Parameter robust preconditioners are proposed for solving these linear systems along with information on practical algorithm implementation and detailed spectral analysis. Problem independent eigenvalue bounds and upper bound approximations of the condition numbers of the eigenvector matrices are obtained for the preconditioned matrices. Such results ensure efficient Krylov subspace acceleration methods and a parameter-free Chebyshev acceleration method, which are both robust in view of all discretization and model parameters. Numerical experiments are presented to demonstrate the robustness and effectiveness of the proposed preconditioners within both Krylov subspace and Chebyshev accelerations compared with some already available preconditioned Krylov subspace methods.

MSC:

65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49K20 Optimality conditions for problems involving partial differential equations

Software:

AGMG; MinRes; IFISS
Full Text: DOI

References:

[1] Abbeloos, D.; Diehl, M.; Hinze, M.; Vandewalle, S., Nested multigrid methods for time-periodic, parabolic optimal control problems, Comput. Vis. Sci., 14, 27-38 (2011) · Zbl 1241.65061 · doi:10.1007/s00791-011-0158-4
[2] Anjam, I.; Valdman, J., Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements, Appl. Math. Comput., 267, 252-263 (2015) · Zbl 1410.65441
[3] Axelsson, O., Iterative Solution Methods (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0795.65014 · doi:10.1017/CBO9780511624100
[4] Axelsson, O.; Farouq, S.; Neytcheva, M., Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems Poisson and convection-diffusion control, Numer. Algorithms, 73, 3, 631-663 (2016) · Zbl 1353.65059 · doi:10.1007/s11075-016-0111-1
[5] Axelsson, O.; Liang, Z-Z, A note on preconditioning methods for time-periodic eddy current optimal control problems, J. Comput. Appl. Math., 352, 262-277 (2019) · Zbl 1410.65093 · doi:10.1016/j.cam.2018.11.010
[6] Axelsson, O.; Lukáš, D., Preconditioning methods for eddy-current optimally controlled time-harmonic electromagnetic problems, J. Numer. Math., 27, 1, 1-21 (2019) · Zbl 1428.65040 · doi:10.1515/jnma-2017-0064
[7] Axelsson, O.; Neytcheva, M.; Ahmad, B., A comparison of iterative methods to solve complex valued linear algebraic systems, Numer. Algorithm., 66, 4, 811-841 (2014) · Zbl 1307.65034 · doi:10.1007/s11075-013-9764-1
[8] Bai, Z-Z, Block preconditioners for elliptic PDE-constrained optimization problems, Computing, 91, 4, 379-395 (2011) · Zbl 1242.65121 · doi:10.1007/s00607-010-0125-9
[9] Bai, Z-Z; Benzi, M.; Chen, F.; Wang, Z-Q, Preconditioned MHSS Iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA, J. Numer. Anal., 33, 1, 343-369 (2013) · Zbl 1271.65100 · doi:10.1093/imanum/drs001
[10] Bai, Z-Z; Chen, F.; Wang, Z-Q, Additive block diagonal preconditioning for block two-by-two linear systems of skew-H,amiltonian coefficient matrices, Numer. Algorithm., 62, 655-675 (2013) · Zbl 1267.65034 · doi:10.1007/s11075-013-9696-9
[11] Barker, AT; Stoll, M., Domain decomposition in time for PDE,-constrained optimization, Comput. Phys Commun., 197, 136-143 (2015) · Zbl 1352.65161 · doi:10.1016/j.cpc.2015.08.025
[12] Benamou, JD, Domain decomposition, optimal control of systems governed by partial differential equations, and synthesis of feedback laws, J. Optim. Theory Appl., 102, 1, 15-36 (1999) · Zbl 0946.49025 · doi:10.1023/A:1021882126367
[13] Benamou, JD; Desprès, B., A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phy., 136, 1, 68-82 (1997) · Zbl 0884.65118 · doi:10.1006/jcph.1997.5742
[14] Benzi, M.; Golub, GH; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[15] Borzì, A.; Schulz, V., Multigrid methods for PDE optimization, SIAM Rev., 51, 2, 361-395 (2009) · Zbl 1167.35354 · doi:10.1137/060671590
[16] Bramble, JH; Pasciak, JE, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 51, 1-17 (1988) · Zbl 0643.65017 · doi:10.1090/S0025-5718-1988-0917816-8
[17] Elman, H.C., Silverster, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford university press, New York (2005) · Zbl 1083.76001
[18] Elman, HC; Ramage, A.; Silvester, DJ, Algorithm 866 IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33, 2, 14 (2007) · Zbl 1365.65326 · doi:10.1145/1236463.1236469
[19] Elman, HC; Ramage, A.; Silvester, DJ, IFISS A computational laboratory for investigating incompressible flow problems, SIAM Rev., 56, 2, 261-273 (2014) · Zbl 1426.76645 · doi:10.1137/120891393
[20] Gould, NIM; Hribar, ME; Nocedal, J., On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23, 4, 1376-1395 (2001) · Zbl 0999.65050 · doi:10.1137/S1064827598345667
[21] Greenbaum, A., Iterative Methods for Solving Linear Systems, vol. 17 (1997), Philadelphia: SIAM, Philadelphia · Zbl 0883.65022 · doi:10.1137/1.9781611970937
[22] Güttel, S.; Pearson, JW, A rational deferred correction approach to parabolic optimal control problems, IMA J. Numer. Anal., 38, 4, 1861-1892 (2017) · Zbl 1462.65160 · doi:10.1093/imanum/drx046
[23] Herzog, R.; Sachs, E., Preconditioned conjugate gradient method for optimal control problems with control and state constraints. SIAM, J. Matrix Anal. Appl., 31, 5, 2291-2317 (2010) · Zbl 1209.49038 · doi:10.1137/090779127
[24] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23 (2008), New York: Springer, New York · Zbl 1167.49001
[25] Kollmann, M.: Efficient iterative solvers for saddle point systems arising in PDE-constrained optimization problems with inequality constraints. PhD thesis Linz: Johannes Kepler University (2013)
[26] Kollmann, M.; Kolmbauer, M., A preconditioned minres solver for time-periodic parabolic optimal control problems, Numer Linear Algebra Appl., 20, 5, 761-784 (2013) · Zbl 1313.49035 · doi:10.1002/nla.1842
[27] Kollmann, M.; Kolmbauer, M.; Langer, U.; Wolfmayr, M.; Zulehner, W., A robust finite element solver for a multiharmonic parabolic optimal control problem, Comput. Math. Appl., 65, 3, 469-486 (2013) · Zbl 1319.49043 · doi:10.1016/j.camwa.2012.06.012
[28] Kolmbauer, M.: The multiharmonic finite element and boundary element method for simulation and control of eddy current problems. PhD thesis Linz: Johannes Kepler University (2012) · Zbl 1290.49056
[29] Krendl, W.; Simoncini, V.; Zulehner, W., Stability estimates and structural spectral properties of saddle point problems, Numer. Math., 124, 1, 183-213 (2013) · Zbl 1269.65032 · doi:10.1007/s00211-012-0507-3
[30] Langer, U.; Wolfmayr, M., Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem, J. Numer. Math., 21, 4, 265-300 (2013) · Zbl 1284.65078 · doi:10.1515/jnum-2013-0011
[31] Liang, Z-Z; Axelsson, O.; Neytcheva, M., A robust structured preconditioner for time-harmonic parabolic optimal control problems, Numer. Algorithm., 79, 575-596 (2018) · Zbl 1400.49041 · doi:10.1007/s11075-017-0451-5
[32] Logist, F.; Wouwer, AV; Smets, I.; Impe, JV, Optimal temperature profiles for tubular reactors implemented through a flow reversal strategy, Chem. Eng Process., 62, 4675-4688 (2007)
[33] Mardal, KA; Nielsen, BF; Nordaas, M., Robust preconditioners for PDE,-constrained optimization with limited observations, BIT Numer. Math., 57, 405-431 (2017) · Zbl 1368.65099 · doi:10.1007/s10543-016-0635-8
[34] Napov, A.; Notay, Y., An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34, 2, A1079-A1109 (2012) · Zbl 1248.65037 · doi:10.1137/100818509
[35] Nédélec, J-C, Mixed finite elements in \(\mathbb{R}^3\) ℝ3, Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[36] Nédélec, JC, A new family of mixed finite elements in \(\mathbb{R}^3\) ℝ3, Numer. Math., 50, 1, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[37] Nilchan, S.; Pantelides, C., On the optimisation of periodic adsorption processes, Adsorption, 4, 113-147 (1998) · doi:10.1023/A:1008823102106
[38] Notay, Y.: AGMG software and documentation; see http://agmg.eu/
[39] Notay, Y., An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37, 123-146 (2010) · Zbl 1206.65133
[40] Notay, Y., Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 34, 4, A2288-A2316 (2012) · Zbl 1250.76139 · doi:10.1137/110835347
[41] Paige, CC; Saunders, MA, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 4, 617-629 (1975) · Zbl 0319.65025 · doi:10.1137/0712047
[42] Pearson, JW; Gondzio, J., Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization, Numer. Math., 137, 4, 959-999 (2017) · Zbl 1379.65042 · doi:10.1007/s00211-017-0892-8
[43] Pearson, JW; Stoll, M.; Wathen, AJ, Robust iterative solution of a class of time-dependent optimal control problems, PAMM, 12, 1, 3-6 (2012) · doi:10.1002/pamm.201210002
[44] Pearson, J.W., Wathen, A.J.: Matching Schur complement approximations for certain saddle-point systems. In Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 1001-1016. Springer (2018) · Zbl 1405.65048
[45] Pearson, JW; Stoll, M.; Wathen, AJ, Regularization-robust preconditioners for time-dependent PDE,-constrained optimization problems, SIAM J Matrix Anal. Appl., 33, 4, 1126-1152 (2012) · Zbl 1263.65035 · doi:10.1137/110847949
[46] Pearson, JW; Wathen, AJ, A new approximation of the S,chur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 19, 5, 816-829 (2012) · Zbl 1274.65187 · doi:10.1002/nla.814
[47] Rees, T.; Dollar, HS; Wathen, AJ, Optimal solvers for PDE,-constrained optimization, SIAM J. Sci. Comput., 32, 1, 271-298 (2010) · Zbl 1208.49035 · doi:10.1137/080727154
[48] Ress, T.; Stoll, M., Block-triangular preconditioners for PDE,-constrained optimization, Numer. Linear Algebra Appl., 17, 6, 977-996 (2010) · Zbl 1240.65097 · doi:10.1002/nla.693
[49] Saad, Y., A flexible inner-outer preconditioned GMRES Algorithm, SIAM J. Sci. Comput., 14, 2, 461-419 (1993) · Zbl 0780.65022 · doi:10.1137/0914028
[50] Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003) · Zbl 1031.65046
[51] Saad, Y.; Schultz, Mh, GMRES A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[52] Schöberl, J.; Zulehner, W., Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 29, 3, 752-773 (2007) · Zbl 1154.65029 · doi:10.1137/060660977
[53] Simoncini, V., Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems, Comput. Optim. Appl., 53, 2, 591-617 (2012) · Zbl 1266.49061 · doi:10.1007/s10589-012-9464-0
[54] Stoll, M., One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem, IMA J. Numer. Anal., 34, 4, 1554-1577 (2013) · Zbl 1303.65050 · doi:10.1093/imanum/drt019
[55] Stoll, M.; Breiten, T., A low-rank in time approach to PDE-constrained optimization, SIAM J. Sci. Comput., 37, 1, B1-B29 (2015) · Zbl 1330.65153 · doi:10.1137/130926365
[56] Stoll, M., Wathen, A.J.: All-at-once solution of time-dependent PDE-constrained optimization problems. Technical Report 1017. The Mathematical Institute, University of Oxford (2010) · Zbl 1195.65083
[57] Toumi, A.; Engell, S.; Diehl, M.; Bock, HG; Schloder, JP, Efficient optimization of simulated moving bed processes, Chem. Eng Process., 46, 1067-1084 (2007) · doi:10.1016/j.cep.2006.06.026
[58] Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods and Applications, vol. 112 (2010), Providence: American Mathematical Society, Providence · Zbl 1195.49001
[59] Wolfmayr, M.: Multiharmonic finite element analysis of parabolic time-periodic simulation and optimal control problems. Phd thesis Linz: Johannes Kepler University (2014)
[60] Zulehner, W., Nonstandard norms and robust estimates for saddle point problems, SIAM J Matrix Anal. Appl., 32, 2, 536-560 (2011) · Zbl 1251.65078 · doi:10.1137/100814767
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.