×

Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements. (English) Zbl 1410.65441

Summary: We propose an effective and flexible way to assemble finite element stiffness and mass matrices in MATLAB. We apply this for problems discretized by edge finite elements. Typical edge finite elements are Raviart-Thomas elements used in discretizations of \(H(\operatorname{div})\) spaces and Nédélec elements in discretizations of \(H(\operatorname{curl})\) spaces. We explain vectorization ideas and comment on a freely available MATLAB code which is fast and scalable with respect to time.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y15 Packaged methods for numerical algorithms

References:

[2] Bahriawati, C.; Carstensen, C., Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control, CMAM, 5, 4, 333-361 (2005) · Zbl 1086.65107
[3] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[6] Dunavant, D. A., High degree efficient symmetrical gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng., 21, 1129-1148 (1985) · Zbl 0589.65021
[7] Funken, S.; Praetorius, D.; Wissgott, P., Efficient implementation of adaptive P1-FEM in MATLAB, Comput. Methods Appl. Math., 11, 460-490 (2011) · Zbl 1284.65197
[9] Nédélec, J. C., Mixed finite elements in \(R^3\), Numer. Mat., 35, 315-341 (1980) · Zbl 0419.65069
[10] Neittaanmäki, P.; Repin, S., Reliable methods for computer simulation, Error control and a posteriori estimates. Error control and a posteriori estimates, Studies in Mathematics and its Applications, 33 (2004), Elsevier: Elsevier Amsterdam · Zbl 1076.65093
[11] Rahman, T.; Valdman, J., Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219, 7151-7158 (2013) · Zbl 1288.65169
[12] Raviart, P. A.; Thomas, J. M., A mixed finite element for second order elliptic problems, (Galligani, I.; Magenes, E., Mathematical Aspects of Finite Element Methods (1977), Springer-Verlag: Springer-Verlag New York), 292-315 · Zbl 0362.65089
[15] Šolín, P.; Korous, L.; Kus, P., Hermes2D, a C++ library for rapid development of adaptive hp-FEM and hp-DG solvers, J. Comput. Appl. Math., 270, 152-165 (2014) · Zbl 1321.65204
[16] Šolín, P.; Segeth, K.; Doležel, I., Higher-order finite element methods. Higher-order finite element methods, Studies in Advanced Mathematics, 41 (2003), Chapman and Hall: Chapman and Hall CRC, Boca Raton, Florida
[17] Valdman, J., Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned cg method, Adv. Numer. Anal., 2009 (2009), Article ID 164519 · Zbl 1200.65095
[18] Zhang, L.; Cui, T.; Liu, H., A set of symmetric quadrature rules on triangles and tetrahedra, J. Comput. Math., 26, 3, 1-16 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.