×

Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot’S equations utilizing total pressure. (English) Zbl 07379628

Summary: We develop robust solvers for a class of perturbed saddle-point problems arising in the study of a second-order elliptic equation in mixed form (in terms of flux and potential), and of the four-field formulation of Biot’s consolidation problem for linear poroelasticity (using displacement, filtration flux, total pressure, and fluid pressure). The stability of the continuous variational mixed problems, which hinges upon using adequately weighted spaces, is addressed in detail; and the efficacy of the proposed preconditioners, as well as their robustness with respect to relevant material properties, is demonstrated through several numerical experiments.

MSC:

65F08 Preconditioners for iterative methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35B35 Stability in context of PDEs

References:

[1] E. Ahmed, J. M. Nordbotten, and F. A. Radu, Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems, J. Comput. Appl. Math., 364 (2020), 112312. · Zbl 1524.76439
[2] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in H(div) and H(curl), Numer. Math., 85 (2000), pp. 197-217. · Zbl 0974.65113
[3] T. B\aerland, M. Kuchta, K.-A. Mardal, and T. Thompson, An observation on the uniform preconditioners for the mixed Darcy problem, Numer. Methods Partial Differential Equations, 36 (2020), pp. 1718-1734. · Zbl 07777669
[4] L. Berger, R. Bordas, D. Kay, and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), pp. A2222-A2245, https://doi.org/10.1137/15M1009822. · Zbl 1326.76054
[5] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, Berlin, New York, 2012. · Zbl 0344.46071
[6] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer-Verlag, Heidelberg, 2013. · Zbl 1277.65092
[7] J. W. Both, M. Borregales, J. M. Nordbotten, K. Kumar, and F. A. Radu, Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68 (2017), pp. 101-108. · Zbl 1383.74025
[8] D. Braess, Stability of saddle point problems with penalty, RAIRO Modél. Math. Anal. Numér., 30 (1996), pp. 731-742. · Zbl 0860.65054
[9] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19 (1986), pp. 23-56. · Zbl 0616.65037
[10] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217-235. · Zbl 0599.65072
[11] T. Chaumont-Frelet, Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers, Calcolo, 56 (2019), 49. · Zbl 1430.65008
[12] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Proceedings of the International Conference on Computational Science, Lecture Notes in Comput. Sci. 2331, Springer, Berlin, Heidelberg, 2002, pp. 632-641. · Zbl 1056.65046
[13] P. E. Farrell, M. G. Knepley, F. Wechsung, and L. Mitchell, PCPATCH: Software for the Topological Construction of Multigrid Relaxation Methods, preprint, https://arxiv.org/abs/1912.08516, 2019.
[14] F. J. Gaspar, J. L. Gracia, F. J. Lisbona, and C. W. Oosterlee, Distributive smoothers in multigrid for problems with dominating grad-div operators, Numer. Linear Algebra Appl., 15 (2008), pp. 661-683. · Zbl 1212.65484
[15] G. N. Gatica, A Simple Introduction to the Mixed Finite Element Method, Springer-Verlag, Berlin, 2014. · Zbl 1293.65152
[16] G. Harper, R. Wang, J. Liu, S. Tavener, and R. Zhang, A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements, Comput. Math. Appl., 80 (2020), pp. 1578-1595. · Zbl 1451.74206
[17] L. R. Herrmann, Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J., 3 (1965), pp. 1896-1900.
[18] Q. Hong and J. Kraus, Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal., 48 (2018), pp. 202-226. · Zbl 1398.65046
[19] Q. Hong, J. Kraus, M. Lymbery, and F. Philo, Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models, Numer. Linear Algebra Appl., 26 (2019), e2242. · Zbl 1463.65372
[20] X. Hu, C. Rodrigo, F. J. Gaspar, and L. T. Zikatanov, A nonconforming finite element method for the Biot’s consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), pp. 143-154. · Zbl 1381.76175
[21] T. V. Kolev and P. S. Vassilevski, Parallel auxiliary space AMG solver for H(div) problems, SIAM J. Sci. Comput., 34 (2012), pp. A3079-A3098, https://doi.org/10.1137/110859361. · Zbl 1332.65042
[22] S. Kumar, R. Oyarzúa, R. Ruiz-Baier, and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 273-299. · Zbl 1511.65114
[23] J. Lee, K.-A. Mardal, and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39 (2017), pp. A1-A24, https://doi.org/10.1137/15M1029473. · Zbl 1381.76183
[24] Y. Li and L. T. Zikatanov, Residual-based a posteriori error estimates of mixed methods for a three-field Biot’s consolidation model, IMA J. Numer. Anal., (2020), https://doi.org/10.1093/imanum/draa074. · Zbl 1493.65157
[25] K.-A. Mardal, M. E. Rognes, and T. B. Thompson, Accurate Discretization of Poroelasticity Without Darcy Stability-Stokes-Biot Stability Revisited, preprint, https://arxiv.org/abs/2007.10012, 2020.
[26] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl., 18 (2011), pp. 1-40. · Zbl 1249.65246
[27] A. Mikelić, B. Wang, and M. F. Wheeler, Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18 (2014), pp. 325-341. · Zbl 1386.76115
[28] P. Monk, J. Schöberl, and A. Sinwel, Hybridizing Raviart-Thomas elements for the Helmholtz equation, Electromagnetics, 30 (2010), pp. 149-176.
[29] R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), pp. 2951-2973, https://doi.org/10.1137/15M1050082. · Zbl 1457.65210
[30] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case, Comput. Geosci., 11 (2007), pp. 131-144. · Zbl 1117.74015
[31] E. Piersanti, J. J. Lee, T. Thompson, K.-A. Mardal, and M. E. Rognes, Parameter Robust Preconditioning by Congruence for Multiple-network Poroelasticity, preprint, https://arxiv.org/abs/2003.09641, 2020.
[32] C. E. Powell and D. Silvester, Optimal preconditioning for Raviart-Thomas mixed formulation of second-order elliptic problems, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 718-738, https://doi.org/10.1137/S0895479802404428. · Zbl 1073.65128
[33] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. · Zbl 0362.65089
[34] R. Ruiz-Baier and I. Lunati, Mixed finite element-discontinuous finite volume element discretization of a general class of multicontinuum models, J. Comput. Phys., 322 (2016), pp. 666-688. · Zbl 1351.76079
[35] T. Rusten, P. Vassilevski, and R. Winther, Interior penalty preconditioners for mixed finite element approximations of elliptic problems, Math. Comput., 65 (1996), pp. 447-466. · Zbl 0857.65117
[36] M. Sun and H. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity, Comput. Math. Appl., 73 (2017), pp. 804-823. · Zbl 1369.76028
[37] A. Toselli and O. Widlund, Domain Decomposition Methods — Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer-Verlag, Berlin, Heidelberg, 2006. · Zbl 1069.65138
[38] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56 (1996), pp. 179-196. · Zbl 0851.65087
[39] P. S. Vassilevski and U. Villa, A block-diagonal algebraic multigrid preconditioner for the Brinkman problem, SIAM J. Sci. Comput., 35 (2013), pp. S3-S17, https://doi.org/10.1137/120882846. · Zbl 1282.65133
[40] P. S. Vassilevski and U. Villa, A mixed formulation for the Brinkman problem, SIAM J. Numer. Anal., 52 (2014), pp. 258-281, https://doi.org/10.1137/120884109. · Zbl 1457.65219
[41] M. F. Wheeler, G. Xue, and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity, Comput. Geosci., 18 (2007), pp. 57-75. · Zbl 1395.65093
[42] S.-Y. Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model, Numer. Methods Partial Differential Equations, 29 (2013), pp. 1749-1777. · Zbl 1274.74455
[43] S.-Y. Yi, A study of two modes of locking in poroelasticity, SIAM J. Numer. Anal., 55 (2017), pp. 1915-1936, https://doi.org/10.1137/16M1056109. · Zbl 1430.74140
[44] Y. Zeng, M. Cai, and F. Wang, An \(H(div)\)-conforming finite element method for the Biot consolidation model, East Asian J. Appl. Math., 9 (2019), pp. 558-579. · Zbl 1468.65156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.