×

Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems. (English) Zbl 07378248

Summary: We introduce two inertial extragradient algorithms for solving a bilevel pseudomonotone variational inequality problem in real Hilbert spaces. The advantages of the proposed algorithms are that they can work without the prior knowledge of the Lipschitz constant of the involving operator and only one projection onto the feasible set is required. Strong convergence theorems of the suggested algorithms are obtained under suitable conditions. Finally, some numerical examples are provided to show the efficiency of the proposed algorithms.

MSC:

47H05 Monotone operators and generalizations
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65K15 Numerical methods for variational inequalities and related problems

Software:

FOM
Full Text: DOI

References:

[1] Xu, MH; Li, M.; Yang, CC, Neural networks for a class of bi-level variational inequalities, J. Global Optim., 44, 535-552 (2009) · Zbl 1180.90342 · doi:10.1007/s10898-008-9355-1
[2] Anh, TV, Linesearch methods for bilevel split pseudomonotone variational inequality problems, Numer. Algorithm, 81, 1067-1087 (2019) · Zbl 1499.65257 · doi:10.1007/s11075-018-0583-2
[3] Cho, SY; Li, W.; Kang, SM, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013, 199 (2013) · Zbl 1364.47017 · doi:10.1186/1029-242X-2013-199
[4] Hieu, DV; Moudafi, A., Regularization projection method for solving bilevel variational inequality problem, Optim. Lett. (2020) · Zbl 1461.49012 · doi:10.1007/s11590-020-01580-5
[5] Shehu, Y.; Vuong, PT; Zemkoho, A., An inertial extrapolation method for convex simple bilevel optimization, Optim. Methods Softw. (2019) · Zbl 1464.90101 · doi:10.1080/10556788.2019.1619729
[6] Korpelevich, GM, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody., 12, 747-756 (1976) · Zbl 0342.90044
[7] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26, 827-845 (2011) · Zbl 1232.58008 · doi:10.1080/10556788.2010.551536
[8] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38, 431-446 (2000) · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[9] Liu, L.; Tan, B.; Cho, SY, On the resolution of variational inequality problems with a double-hierarchical structure, J. Nonlinear Convex Anal., 21, 377-386 (2020) · Zbl 07347508
[10] Sahu, DR; Yao, JC; Verma, M.; Shukla, KK, Convergence rate analysis of proximal gradient methods with applications to composite minimization problems, Optimization (2020) · Zbl 1459.65075 · doi:10.1080/02331934.2019.1702040
[11] Cao, Y.; Guo, K., On the convergence of inertial two-subgradient extragradient method for variational inequality problems, Optimization, 69, 1237-1253 (2020) · Zbl 07201646 · doi:10.1080/02331934.2019.1686632
[12] Yang, J.; Liu, H.; Liu, Z., Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization, 67, 2247-2258 (2018) · Zbl 1415.49010 · doi:10.1080/02331934.2018.1523404
[13] Yang, J.; Liu, H., Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algorithms, 80, 741-752 (2019) · Zbl 1493.47107 · doi:10.1007/s11075-018-0504-4
[14] Yamada, I., The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Inherently Parallel Algorithms Feasibility Optimiz. Appl., 8, 473-504 (2001) · Zbl 1013.49005 · doi:10.1016/S1570-579X(01)80028-8
[15] Liu, L., A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal., 20, 471-488 (2019) · Zbl 1478.47081
[16] Jung, JS, Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem, J. Nonlinear Sci. Appl., 9, 4214-4225 (2016) · Zbl 1350.47047 · doi:10.22436/jnsa.009.06.63
[17] Takahashi, W.; Wen, CF; Yao, JC, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19, 407-419 (2018) · Zbl 1462.47043 · doi:10.24193/fpt-ro.2018.1.32
[18] Thong, DV; Triet, NA; Li, X-H; Dong, Q-L, Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems, Numer. Algorithms, 83, 1123-1143 (2020) · Zbl 1444.47073 · doi:10.1007/s11075-019-00718-6
[19] Polyak, BT, Some methods of speeding up the convergence of iteration methods, USSR. Comput. Math. Math. Phys., 4, 1-17 (1964) · Zbl 0147.35301 · doi:10.1016/0041-5553(64)90137-5
[20] Nesterov, Y., Gradient methods for minimizing composite functions, Math. Program., 140, 125-161 (2013) · Zbl 1287.90067 · doi:10.1007/s10107-012-0629-5
[21] Dong, Q-L; Lu, YY; Yang, JF, The extragradient algorithm with inertial effects for solving the variational inequality, Optimization, 65, 2217-2226 (2016) · Zbl 1358.90139 · doi:10.1080/02331934.2016.1239266
[22] Tan, B.; Xu, S.; Li, S., Inertial shrinking projection algorithms for solving hierarchical variational inequality problems, J. Nonlinear Convex Anal., 21, 871-884 (2020) · Zbl 07347525
[23] Tan, B.; Xu, S., Strong convergence of two inertial projection algorithms in Hilbert spaces, J. Appl. Numer. Optim., 2, 171-186 (2020)
[24] Shehu, Y.; Gibali, A., A New inertial relaxed method for solving split feasibilities, Optim. Lett. (2020) · Zbl 1475.90061 · doi:10.1007/s11590-020-01603-1
[25] Muu, LD; Quy, NV, On existence and solution methods for strongly pseudomonotone equilibrium problems, Vietnam J. Math., 43, 229-238 (2015) · Zbl 1317.47058 · doi:10.1007/s10013-014-0115-x
[26] Cottle, RW; Yao, JC, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75, 281-295 (1992) · Zbl 0795.90071 · doi:10.1007/BF00941468
[27] Saejung, S.; Yotkaew, P., Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75, 742-750 (2012) · Zbl 1402.49011 · doi:10.1016/j.na.2011.09.005
[28] Thong, DV; Hieu, DV; Rassias, TM, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optim. Lett., 14, 115-144 (2020) · Zbl 1433.49016 · doi:10.1007/s11590-019-01511-z
[29] Beck, A.; Guttmann-Beck, N., FOM-a MATLAB toolbox of first-order methods for solving convex optimization problems, Optim. Methods Softw., 34, 172-193 (2019) · Zbl 1461.65127 · doi:10.1080/10556788.2018.1437159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.