×

Regularization projection method for solving bilevel variational inequality problem. (English) Zbl 1461.49012

Summary: In this paper, we propose a regularization projection method for solving a bilevel variational inequality problem in a Hilbert space. We first describe how to incorporate the regularization technique and the modified subgradient extragradient – like method, and then establish the strong convergence of the resulting algorithm under some suitable conditions. The new algorithm requires to compute only one projection on feasible set, and it can be easily implemented without the prior knowledge of Lipschitz and strongly monotone constants of operators. The obtained results in the paper improve and extend some related results in the literature. Several numerical results are reported to illustrate the computational performance of the proposed algorithm.

MSC:

49J40 Variational inequalities
Full Text: DOI

References:

[1] Alber, Ya I.; Ryazantseva, I., Nonlinear Ill-Posed Problems of Monotone Type (2006), Dordrecht: Springer, Dordrecht · Zbl 1086.47003
[2] Anh, PK; Buong, N.; Hieu, DV, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal., 93, 2136-2157 (2014) · Zbl 1297.47066 · doi:10.1080/00036811.2013.872777
[3] Antipin, AS, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Mat. Metody, 12, 1164-1173 (1976) · Zbl 0368.90115
[4] Bakushinskii, AB, Methods for the solution of monotone variational inequalities that are based on the principle of iterative regularization, Zh. Vychisl. Mat. Mat. Fiz., 17, 1350-1362 (1977) · Zbl 0384.49025
[5] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[6] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Meth. Softw., 26, 827-845 (2011) · Zbl 1232.58008 · doi:10.1080/10556788.2010.551536
[7] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, 1119-1132 (2012) · Zbl 1260.65056 · doi:10.1080/02331934.2010.539689
[8] Dempe, S., Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52, 333-359 (2003) · Zbl 1140.90493 · doi:10.1080/0233193031000149894
[9] Dempe, S., Foundations of Bilevel Programming (2002), Berlin: Kluwer Academic Publishers, Berlin · Zbl 1038.90097
[10] Dempe, S.; Kalashnikov, V.; Pérez-Valdés, GA; Kalashnykova, N., Bilevel Programming Problems (2015), Berlin: Springer, Berlin · Zbl 1338.90005 · doi:10.1007/978-3-662-45827-3
[11] Duc, PM; Muu, LD, A splitting algorithm for a class of bilevel equilibrium problems involving nonexpansive mappings, Optimization, 65, 1855-1866 (2016) · Zbl 1352.65162 · doi:10.1080/02331934.2016.1195831
[12] Facchinei, F.; Pang, JS, Finite—Dimensional Variational Inequalities and Complementarity Problems (2003), Berlin: Springer, Berlin · Zbl 1062.90002
[13] Gibali, A.; Shehu, Y., An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces, Optimization, 68, 13-32 (2019) · Zbl 07007063 · doi:10.1080/02331934.2018.1490417
[14] Gibali, A.; Hieu, DV, A new inertial double-projection method for solving variational inequalities, J. Fixed Point Theory Appl., 21, 97 (2019) · Zbl 07152628 · doi:10.1007/s11784-019-0726-7
[15] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), New York, Basel: Marcel Dekker, New York, Basel · Zbl 0537.46001
[16] Hartman, P.; Stampacchia, G., On some non-linear elliptic diferential-functional equations, Acta Math., 115, 271-310 (1966) · Zbl 0142.38102 · doi:10.1007/BF02392210
[17] Hieu, DV; Thong, DV, New extragradient-like algorithms for strongly pseudomonotone variational inequalities, J. Glob. Optim., 70, 385-399 (2018) · Zbl 1384.65041 · doi:10.1007/s10898-017-0564-3
[18] Hieu, DV; Anh, PK; Muu, LD, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., 66, 75-96 (2017) · Zbl 1368.65103 · doi:10.1007/s10589-016-9857-6
[19] Hieu, DV; Anh, PK; Muu, LD, Modified extragradient-like algorithms with new stepsizes for variational inequalities, Comput. Optim. Appl., 73, 913-932 (2019) · Zbl 07066034 · doi:10.1007/s10589-019-00093-x
[20] Hieu, DV; Cho, YJ; Xiao, Y-B, Golden ratio algorithms with new stepsize rules for variational inequalities, Math. Meth. Appl. Sci. (2019) · Zbl 1512.90229 · doi:10.1002/mma.5703
[21] Hieu, DV; Muu, LD; Quy, PK; Vy, LV, Explicit extragradient-like method with regularization for variational inequalities, Results Math., 74, 20 (2019) · Zbl 1407.34034 · doi:10.1007/s00025-018-0941-3
[22] Hieu, DV; Quy, PK, An inertial modified algorithm for solving variational inequalities, RAIRO Oper. Res. (2019) · Zbl 1516.65050 · doi:10.1051/ro/2018115
[23] Hieu, DV; Strodiot, JJ; Muu, LD, Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math. (2020) · Zbl 1524.65212 · doi:10.1016/j.cam.2020.112844
[24] Hieu, DV; Strodiot, JJ; Muu, LD, An explicit extragradient algorithm for solving variational inequalities, J. Optim. Theory Appl. (2020) · Zbl 07198926 · doi:10.1007/s10957-020-01661-6
[25] Hieu, DV; Thong, DV, A new projection method for a class of variational inequalities, Appl. Anal., 98, 2423-2439 (2019) · Zbl 07119981 · doi:10.1080/00036811.2018.1460816
[26] Khanh, PD; Vuong, PT, Modified projection method for strongly pseudomonotone variational inequalities, J. Glob. Optim., 58, 341-350 (2014) · Zbl 1454.47095 · doi:10.1007/s10898-013-0042-5
[27] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications (1980), New York: Academic Press, New York · Zbl 0457.35001
[28] Konnov, IV, Equilibrium Models and Variational Inequalities (2007), Amsterdam: Elsevier, Amsterdam · Zbl 1140.91056
[29] Korpelevich, GM, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12, 747-756 (1976) · Zbl 0342.90044
[30] Maingé, P-E, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47, 1499-1515 (2008) · Zbl 1178.90273 · doi:10.1137/060675319
[31] Malitsky, YV, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25, 502-520 (2015) · Zbl 1314.47099 · doi:10.1137/14097238X
[32] Malitsky, YV; Semenov, VV, An extragradient algorithm for monotone variational inequalities, Cybern. Syst. Anal., 50, 271-277 (2014) · Zbl 1311.49024 · doi:10.1007/s10559-014-9614-8
[33] Moudafi, A., Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim., 47, 287-292 (2010) · Zbl 1190.90125 · doi:10.1007/s10898-009-9476-1
[34] Mordukhovich, B., Variational Analysis and Applications (2018), Cham: Springer, Cham · Zbl 1402.49003 · doi:10.1007/978-3-319-92775-6
[35] Popov, LD, A modification of the Arrow-Hurwicz method for searching for saddle points, Mat. Zametki, 28, 777-784 (1980) · Zbl 0456.90068
[36] Sun, D., A projection and contraction method for the nonlinear complementarity problems and its extensions, Math. Numer. Sin., 16, 183-194 (1994) · Zbl 0817.65092 · doi:10.1016/0168-9274(94)00055-7
[37] Tinti, F., Numerical solution for pseudomonotone variational inequality problems by extragradient methods, Var. Anal. Appl., 79, 1101-1128 (2004) · Zbl 1093.49007
[38] Thong, DV; Triet, NA; Li, XH; Dong, Q-L, Strong convergence of extragradient methods for solving bilevel pseudo-montontone variational inequality problems, Numer. Algorithm (2019) · Zbl 1444.47073 · doi:10.1007/s11075-019-00718-6
[39] Xu, HK, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65, 109-113 (2002) · Zbl 1030.47036 · doi:10.1017/S0004972700020116
[40] Yamada, I.; Butnariu, D.; Censor, Y.; Reich, S., The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Inherently Parallel Algorithms for Feasibility and Optimization and Their Applications, 473-504 (2001), Amsterdam: Elsevier, Amsterdam · Zbl 1013.49005 · doi:10.1016/S1570-579X(01)80028-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.