×

Bivariate degradation modelling with marginal heterogeneous stochastic processes. (English) Zbl 07192059

Summary: In this paper, we consider that the degradation of two performance characteristics of a product can be modelled by stochastic processes and jointly by copula functions, but different stochastic processes govern the behaviour of each performance characteristic (PC) degradation. Different heterogeneous and homogeneous models are presented considering copula functions and different combinations of the most used stochastic processes in degradation analysis as marginal distributions. This is an important aspect to consider because the behaviour of the degradation of each PC may be different in its nature. As the joint distributions of the proposed models result in complex distributions, the estimation of the parameters of interest is performed via MCMC. A simulation study is performed to compare heterogeneous and homogeneous models. In addition, the proposed models are implemented to crack propagation data of two terminals of an electronic device, and some insights are provided about the product reliability under heterogeneous models.

MSC:

60Gxx Stochastic processes
62N05 Reliability and life testing
62Nxx Survival analysis and censored data
Full Text: DOI

References:

[1] Singpurwalla ND. Survival in dynamic environments. Stat Sci. 1995;10(1):86-103. doi: 10.1214/ss/1177010132[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1148.62314
[2] Bagdonavicius V, Nikulin MS. Estimation in degradation models with explanatory variables. Lifetime Data Anal. 2001;7(1):85-103. doi: 10.1023/A:1009629311100[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1010.62094
[3] Lawless J, Crowder M. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Anal. 2004;10(3):213-227. doi: 10.1023/B:LIDA.0000036389.14073.dd[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1054.62122
[4] Park C, Padgett WJ. Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Anal. 2005;11(4):511-527. doi: 10.1007/s10985-005-5237-8[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1120.62088
[5] Park C, Padgett WJ. Stochastic degradation models with several accelerating variables. IEEE Trans Reliab. 2006;55(2):379-390. doi: 10.1109/TR.2006.874937[Crossref], [Web of Science ®], [Google Scholar]
[6] Jiang L, Feng Q, Coit DW. Modeling zoned shock effects on stochastic degradation in dependent failure processes. IIE Trans. 2015;47(5):460-470. doi: 10.1080/0740817X.2014.955152[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[7] van Noortwijk JM. A survey of the application of gamma processes in maintenance. Reliab Eng Syst Saf. 2009;94(1):2-21. doi: 10.1016/j.ress.2007.03.019[Crossref], [Web of Science ®], [Google Scholar]
[8] Ye SY, Chen N, Shen Y. A new class of Wiener process models for degradation analysis. Reliab Eng Syst Saf. 2015;139:58-67. doi: 10.1016/j.ress.2015.02.005[Crossref], [Web of Science ®], [Google Scholar]
[9] Si XS, Wang W, Hu CH, Chen MY, Zhou DH. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech Syst Signal Process. 2013;35(1-2):219-237. doi: 10.1016/j.ymssp.2012.08.016[Crossref], [Web of Science ®], [Google Scholar]
[10] Ye ZS, Wang Y, Tsui KL, et al. Degradation data analysis using Wiener processes with measurement errors. IEEE Trans Reliab. 2013;62(4):772-780. doi: 10.1109/TR.2013.2284733[Crossref], [Web of Science ®], [Google Scholar]
[11] Whitmore GA. Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Anal. 1995;1(3):307-319. doi: 10.1007/BF00985762[Crossref], [PubMed], [Google Scholar] · Zbl 0960.62540
[12] Wang X. Wiener processes with random effects for degradation data. J Multivar Anal. 2010;101(2):340-351. doi: 10.1016/j.jmva.2008.12.007[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1178.62091
[13] Lindqvist BH, Skogsrud G. Modeling of dependent competing risks by first passage times of Wiener processes. IIE Trans. 2008;41(1):72-80. doi: 10.1080/07408170802322697[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[14] Elsayed EA, Liao HT. A geometric Brownian motion model for field degradation data. Int J Mater Prod Technol. 2004;20(1-3):51-72. doi: 10.1504/IJMPT.2004.003912[Crossref], [Web of Science ®], [Google Scholar]
[15] Park C, Padgett WJ. New cumulative damage models for failure using stochastic processes as initial damage. IEEE Trans Reliab. 2005;54(3):530-540. doi: 10.1109/TR.2005.853278[Crossref], [Web of Science ®], [Google Scholar]
[16] Chiang JY, Lio YL, Tsai TR. Degradation tests using geometric Brownian motion process for lumen degradation data. Qual Reliab Eng Int. 2015;31(8):1797-1806. doi: 10.1002/qre.1718[Crossref], [Web of Science ®], [Google Scholar]
[17] Wang X, Xu D. An inverse Gaussian process model for degradation data. Technometrics. 2010;52(2):188-197. doi: 10.1198/TECH.2009.08197[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[18] Ye ZS, Chen N. The inverse Gaussian process as a degradation model. Technometrics. 2014;56(3):302-311. doi: 10.1080/00401706.2013.830074[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[19] Peng CY. Inverse Gaussian processes with random effects and explanatory variables for degradation data. Technometrics. 2015;57(1):100-111. doi: 10.1080/00401706.2013.879077[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[20] Liu Z, Ma X, Yang J, et al. Reliability modeling for systems with multiple degradation processes using inverse Gaussian process and copulas. Math Probl Eng. 2014;2014(1). doi:doi: 10.1155/2014/829597[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1407.62375
[21] Sari JK, Newby MJ, Brombacher AC, et al. Bivariate constant stress degradation model: LED lighting system reliability estimation with two-stage modelling. Qual Reliab Eng Int. 2009;25(8):1067-1084. doi: 10.1002/qre.1022[Crossref], [Web of Science ®], [Google Scholar]
[22] Pan Z, Balakrishnan N, Sun Q, et al. Bivariate degradation analysis of products based on Wiener processes and copulas. J Stat Comput Simul. 2013;83(7):1316-1329. doi: 10.1080/00949655.2012.658805[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62461
[23] Pan Z, Balakrishnan N. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliab Eng Syst Saf. 2011;96(8):949-957. doi: 10.1016/j.ress.2011.03.014[Crossref], [Web of Science ®], [Google Scholar]
[24] Wang Y, Pham H. Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas. IEEE Trans Reliab. 2012;61(1):13-22. doi: 10.1109/TR.2011.2170253[Crossref], [Web of Science ®], [Google Scholar]
[25] Xu D, Sui S. Bivariate degradation modeling and reliability evaluation of accelerometer based on physics-Statistics model and copula function. In Reliability Systems Engineering (ICRSE), 2015 First International Conference on (pp. 1-7). IEEE. [Google Scholar]
[26] Hao H, Su C. Bivariate nonlinear diffusion degradation process modeling via copula and MCMC. Math Probl Eng. 2014;2014(1):1-11. [Google Scholar] · Zbl 1407.62366
[27] Zhou J, Pan Z, Sun Q. Bivariate degradation modeling based on gamma process. Proceedings of the World Congress on Engineering (Vol. 3) 2010. [Google Scholar]
[28] Xiaogang L, Peng X. Multivariate storage degradation modeling based on copula function. Adv Mech Eng. 2014;6:503407. doi: 10.1155/2014/503407[Crossref], [Web of Science ®], [Google Scholar]
[29] Tang S, Guo X, Yu C, et al. Accelerated degradation tests modeling based on the nonlinear wiener process with random effects. Math Probl Eng. 2014;2014(1):1-11. [Google Scholar]
[30] Hu CH, Lee MY, Tang J. Optimum step-stress accelerated degradation test for Wiener degradation process under constraints. Eur J Oper Res. 2015;241(2):412-421. doi: 10.1016/j.ejor.2014.09.003[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1339.90107
[31] Fan J, Yung KC, Pecht M. Lifetime estimation of high-power white LED using degradation-data-driven method. IEEE Trans Device Mater Reliab. 2012;12(2):470-477. doi: 10.1109/TDMR.2012.2190415[Crossref], [Web of Science ®], [Google Scholar]
[32] Whitmore GA, Schenkelberg F. Modeling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Anal. 1997;3(1):27-45. doi: 10.1023/A:1009664101413[Crossref], [PubMed], [Google Scholar] · Zbl 0891.62071
[33] Kahle W, Lehmann A.The Wiener process as a degradation model: modeling and parameter estimation. In: Nikulin MS, Limnios N, Balakrishnan N, Kahle W, Huber-Carol C, editors. Advances in degradation modeling. Boston (MA): Birkhäuser; 2010. p. 127-146. [Crossref], [Google Scholar]
[34] Nelsen RB. An introduction to copulas. 2nd ed. New York: Springer Science and Business Media; 2007. [Google Scholar] · Zbl 1152.62030
[35] Sklar A. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 1959; 8: 229-231. [Google Scholar] · Zbl 0100.14202
[36] Lunn DJ, Spiegelhalter D, Thomas A, et al. The BUGS project: evolution, critique and future directions. Stat Med. 2009;28(25):3049-3067. doi: 10.1002/sim.3680[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[37] Gelfand E, Smith AFM. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc. 1990;85(410):398-409. doi: 10.1080/01621459.1990.10476213[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0702.62020
[38] Casella G, George EI. Explaining the Gibbs sampler. Am Stat. 1992;46(3):167-174. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[39] Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo Methods. J R Stat Soc Ser B. 1993;55(1):3-24. [Google Scholar] · Zbl 0779.62030
[40] Gelman A, Carlin JB, Stern HS, et al. Bayesian data analysis. 2nd ed. Boca Raton (FL): Chapman & Hall/CRC; 2009. [Google Scholar] · Zbl 1039.62018
[41] Ntzoufras I. Bayesian modeling using WinBUGS. Hoboken (NJ): Wiley; 2011. [Google Scholar] · Zbl 1218.62015
[42] Lunn DJ, Thomas A, Best N, et al. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10(4):325-337. doi: 10.1023/A:1008929526011[Crossref], [Web of Science ®], [Google Scholar]
[43] Yan J. Enjoy the Joy of Copulas: with a Package copula. J Stat Softw. 2007;21(4):1-21. doi: 10.18637/jss.v021.i04[Crossref], [Web of Science ®], [Google Scholar]
[44] Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control. 1974;19(6):716-723. doi: 10.1109/TAC.1974.1100705[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0314.62039
[45] Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457-472. doi: 10.1214/ss/1177011136[Crossref], [Google Scholar] · Zbl 1386.65060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.