×

Multivariable variable-gain super-twisting control via output feedback for systems with arbitrary relative degrees. (English) Zbl 1543.93038

Summary: An output-feedback super-twisting algorithm (STA) with variable gains is developed for multiple-input and multiple-output plants with arbitrary relative degrees. Global or semi-global finite-time exact tracking can be guaranteed for a class of uncertain systems with matched nonlinear time-varying disturbances, possibly dependent on the unmeasured states. This represents a significant generalization of recently introduced versions of the STAs to a multivariable setup with arbitrary relative degrees, output-feedback, and variable gains. The construction of such controller is based on a higher-order sliding-mode multivariable differentiator with dynamic gains. The gain adaptation for the controller and differentiator employs state-norm observers to overcome the lack of the full-state measurement. The stability properties of the proposed control system are demonstrated by means of input-to-state stability tools and a Lyapunov function-based analysis. The theoretical results are verified through numerical and academic examples.
{© 2022 John Wiley & Sons Ltd.}

MSC:

93B12 Variable structure systems
93C40 Adaptive control/observation systems
93B52 Feedback control
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] UtkinVI, GuldnerJ, ShiJ. Sliding Mode Control in Electro‐Mechanical Systems. Springer; 2009.
[2] LevantA. Sliding order and sliding accuracy in sliding mode control. Int J Control. 1993;58(6):1247‐1263. · Zbl 0789.93063
[3] OrlovY. Discontinuous Control. Springer; 2009.
[4] PisanoA, UsaiE. Contact force regulation in wire‐actuated pantographs via variable structure control and frequency‐domain techniques. Int J Control. 2008;81(11):1747‐1762. · Zbl 1148.93307
[5] PlestanF, MoulayE, GlumineauA, ChevironT. Robust output feedback sampling control based on second‐order sliding mode. Automatica. 2010;46(6):1096‐1100. · Zbl 1192.93036
[6] ShtesselY, BaevS, ShkolnikovI. Nonminimum‐phase output tracking in causal systems using higher order sliding modes. Int J Robust Nonlinear Control. 2008;18(4-5):454‐467. · Zbl 1284.93050
[7] RaveebdranS, SinghB. Sensorless predictive control of SPMSM driven light EV drive using modified speed adaptive super twisting sliding mode observer with MAF‐PLL. IEEE J Emerg Select Top Ind Electron. 2020;1:1‐10.
[8] UtkinVI. Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron. 1993;40(1):23‐36.
[9] OliveiraTR, RodriguesVHP, EstradaA, FridmanL. Output‐feedback variable gain super‐twisting algorithm for arbitrary relative degree systems. Int J Control. 2018;91(9):2043‐2059. · Zbl 1401.93061
[10] ChalangaA, KamalS, FridmanL, BandyopadhyayB, MorenoJA. Implementation of super‐twisting control: super‐twisting and higher order sliding‐mode observer‐based approaches. IEEE Trans Ind Electron. 2016;63(6):3677‐3685.
[11] López‐CaamalF, MorenoJA. Generalised multivariable supertwisting algorithm. Int J Robust Nonlinear Control. 2019;29(3):634‐660. · Zbl 1411.93097
[12] NageshI, EdwardsC. A multivariable super‐twisting sliding mode approach. Automatica. 2014;50(3):984‐988. · Zbl 1298.93108
[13] CasavolaA, HespanhaJ, IoannouP. Recent trends on the use of switching and mixing in adaptive control. Int J Adapt Control Signal Process. 2012;26(8):690‐691. · Zbl 1274.93001
[14] SunJ, KrstićM, Bekiaris‐LiberisN. Robust adaptive control: legacies and horizons. Int J Adapt Control Signal Process. 2013;27(1/2):1‐3.
[15] YuP, ShtesselY, EdwardsC. Continuous higher order sliding mode control with adaptation of air breathing hypersonic missile. Int J Adapt Control Signal Process. 2016;30(8-10):1099‐1117. · Zbl 1348.93073
[16] RoyS, RoySB, LeeJ, BaldiS. Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans Mechatron. 2019;24(5):2031‐2039.
[17] LiuL, LiuYJ, ChenA, TongS, ChenCLP. Integral Barrier Lyapunov function‐based adaptive control for switched nonlinear systems. Sci China Inf Sci. 2020;63:132203.
[18] RoyS, BaldiS, FridmanLM. On adaptive sliding mode control without a priori bounded uncertainty. Automatica. 2020;111:108650. · Zbl 1430.93031
[19] YuanS, LvM, BaldiS, ZhangL. Lyapunov‐equation‐based stability analysis for switched linear systems and its application to switched adaptive control. IEEE Trans Automat Contr. 2021;66(5):2250‐2256. · Zbl 1536.93702
[20] EdwardsC, ShtesselY. Adaptive dual‐layer super‐twisting control and observation. Int J Control. 2016;89(9):1759‐1766. · Zbl 1353.93024
[21] EfimovD, FridmanL. A hybrid robust non‐homogeneous finite‐time differentiator. IEEE Trans Automat Contr. 2011;56(5):1213‐1219. · Zbl 1368.93082
[22] BartoliniG, LevantA, PisanoA, UsaiE. Adaptive second‐order sliding mode control with uncertainty compensation. Int J Control. 2016;89(9):1747‐1758. · Zbl 1353.93021
[23] Negrete‐ChávezDY, MorenoJ. Second‐order sliding mode output feedback controller with adaptation. Int J Adapt Control Signal Process. 2016;30(8-10):1523‐1543. · Zbl 1348.93070
[24] LevantA, LivneM. Exact differentiation of signals with unbounded higher derivatives. IEEE Trans Automat Contr. 2012;57(4):1076‐1080. · Zbl 1369.93213
[25] MorenoJA. Levant’s arbitrary order differentiator with varying gain. Proceedings of the 20th World Congress of the International Federation of Automatic Control. International Federation of Automatic Control; 2017:1741‐1746; Toulouse.
[26] GonzalezT, MorenoJA, FridmanL. Variable gain super‐twisting sliding mode control. IEEE Trans Automat Contr. 2012;57(8):2100‐2105. · Zbl 1369.93124
[27] MorenoJA. A linear framework for the robust stability analysis of a generalized super‐twisting algorithm. Proceedings of the 6th International Conference on Electrical Engineering, Computing Science and Automatic Control; 2009:1‐6; Institute of Electrical and Electronics Engineers, Toluca.
[28] VidalPVNM, NunesEVL, HsuL. Output‐feedback multivariable global variable gain super‐twisting algorithm. IEEE Trans Automat Contr. 2017;62(6):2999‐3005. · Zbl 1369.93266
[29] OliveiraTR, RodriguesVHP, BattistelA, FridmanL. Global multivariable HOSM differentiator for output‐feedback unit vector control of nonuniform relative degree systems. Proceedings of the 15th International Workshop on Variable Structure Systems. Institute of Electrical and Electronics Engineers; 2018:233‐238; Graz.
[30] OliveiraTR, EstradaA, FridmanLM. Global and exact HOSM differentiator with dynamic gains for output‐feedback sliding mode control. Automatica. 2017;81(7):156‐163. · Zbl 1372.93068
[31] CunhaJPVS, CostaRR, HsuL. Design of first‐order approximation filters for sliding‐mode control of uncertain systems. IEEE Trans Ind Electron. 2008;55(11):4037‐4046.
[32] VazquezC, AranovskiyS, FreidovichLB, FridmanLM. Time‐varying gain differentiator: a mobile hydraulic system case study. IEEE Trans Control Syst Technol. 2016;24(5):1740‐1750.
[33] KhalilHK. Nonlinear Systems. Prentice Hall; 2002. · Zbl 1003.34002
[34] IoannouP, SunJ. Robust Adaptive Control. Prentice Hall; 1996. · Zbl 0839.93002
[35] KhalilHK, EsfandiariF. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Automat Contr. 1993;38(9):1412‐1415. · Zbl 0787.93079
[36] KailathT. Linear Systems. Prentice Hall; 1980. · Zbl 0454.93001
[37] NunesEVL, PeixotoAJ, OliveiraTR, HsuL. Global exact tracking for uncertain MIMO linear systems by output feedback sliding mode control. J Franklin Inst. 2014;351(4):2015‐2032. · Zbl 1372.93067
[38] SastrySS, BodsonM. Adaptive Control: Stability, Convergence and Robustness. Prentice Hall; 1989. · Zbl 0721.93046
[39] HsuL, PeixotoAJ, CunhaJPVS, CostaRR, LizarraldeF. Output‐feedback sliding mode control for a class of uncertain multivariable systems with unmatched nonlinear disturbances. In: EdwardsC (ed.), ColetEF (ed.), FridmanL (ed.), eds. Advances in Variable Structure and Sliding Mode Control. Lecture Notes in Control and Information Science. Springer; 2006:195‐225. · Zbl 1140.93340
[40] HsuL, CostaRR, CunhaJPVS. Model‐reference output‐feedback sliding mode controller for a class of multivariable nonlinear systems. Asian J Control. 2003;5(4):543‐556.
[41] IsidoriA. Nonlinear Control Systems. Springer; 1995. · Zbl 0878.93001
[42] LevantA. Higher‐order sliding modes, differentiation and output‐feedback control. Int J Control. 2003;76(9):924‐941. · Zbl 1049.93014
[43] MorenoJA. Exact differentiator with varying gains. Int J Control. 2018;91(9):1983‐1993. · Zbl 1401.93059
[44] OliveiraTR, PeixotoAJ, NunesEVL, HsuL. Control of uncertain nonlinear systems with arbitrary relative degree and unknown control direction using sliding modes. Int J Adapt Control Signal Process. 2007;21:692‐707. · Zbl 1128.93022
[45] UtkinVI. Discussion aspects of high‐order sliding mode control. IEEE Trans Automat Contr. 2016;61(3):829‐833. · Zbl 1359.93100
[46] VidalPVNM, NunesEVL, HsuL. Multivariable super‐twisting algorithm for a class of systems with uncertain input matrix. Proceedings of the 2016 American Control Conference. Institute of Electrical and Electronics Engineers; 2016:7201‐7206; Boston.
[47] DeimlingD. Multivalued Differential Equations. De Gruyter; 1992. · Zbl 0760.34002
[48] EmelyanovSV, KorovinjSK, NersisianAL, NisenzonYY. Discontinuous output feedback stabilizing an uncertain MIMO plant. Int J Control. 1992;55(1):83‐109. · Zbl 0742.93064
[49] OliveiraTR, RodriguesVHP, BattistelA, FridmanL. Multivariable extension of global finite‐time HOSM based differentiator for output‐feedback unit vector and smooth binary control. Asian J Control. 2019;21(1):2‐20. · Zbl 1422.93098
[50] BattistelA, NunesEVL, HsuL. Multivariable B‐MRAC extension to arbitrary relative degree using global robust exact differentiators. Proceedings of the 13th IEEE Workshop on Variable Structure Systems; 2014:1‐6.
[51] HsuL, CostaRR. B‐MRAC: global exponential stability with a new model reference adaptive controller based on binary control theory. Control‐Theory Adv Technol. 1994;10(4):649‐668.
[52] OliveiraTR, PeixotoAJ, NunesEVL. Binary robust adaptive control with monitoring functions for systems under unknown high‐frequency‐gain sign, parametric uncertainties and unmodeled dynamics. Int J Adapt Control Signal Process. 2016;30(8‐10):1184‐1202. · Zbl 1348.93175
[53] EmelyanovSV. Binary Automatic Control Systems. MIR Publishers; 1987.
[54] EmmeiT, WakuiS, FujimotoH. Acceleration noise suppression for geared in‐wheel‐motor vehicles using double‐encoder. IEEE J Emerg Select Top Ind Electron. 2020;1:1‐9.
[55] AskarianI, BagawadeS, PahlevaniM, KnightA, BakhshaiA. Robust digital nonlinear control system for dual active bridge (DAB) DC/DC converters with asymmetric half‐cycle modulation. IEEE J Emerg Select Top Ind Electron. 2020;1:1‐10.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.