×

Numerical simulation of dynamics of T-lymphocytes population in the lymph node. (Russian. English summary) Zbl 1543.92018

Sib. Zh. Ind. Mat. 25, No. 4, 136-152 (2022); translation in J. Appl. Ind. Math. 16, No. 4, 737-750 (2022).

MSC:

92C37 Cell biology
93D25 Input-output approaches in control theory
34A34 Nonlinear ordinary differential equations and systems

References:

[1] T. Luzyanina, S. Mrusek, J. T. Edwards, D. Roose, S. Ehl, G. Bocharov, “Computational analysis of CFSE proliferation assay”, J. Math. Biol., 54 (2007), 57-89 · Zbl 1113.92021 · doi:10.1007/s00285-006-0046-6
[2] T. Luzyanina, J. Cupovic, B. Ludewig, G. Bocharov, “Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division”, J. Math. Biol., 69 (2014), 1547-1583 · Zbl 1329.92039 · doi:10.1007/s00285-013-0741-z
[3] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert, “Spatiotemporal Dynamics of virus infection spreading in tissues”, PLoS ONE, 11:12. Article e0168576 (2016) · doi:10.1371/journal.pone.0168576
[4] G. I. Marchuk, Matematicheskie modeli v immunologii: vychislitelnye metody i eksperimenty, Nauka, M., 1991 · Zbl 0795.92013
[5] K. A. Pawelek, S. Liu, F. Pahlevani, F. L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci, 235:1 (2012), 98-109 · Zbl 1241.92042 · doi:10.1016/j.mbs.2011.11.002
[6] S. Nakaoka, S. Iwami, K. Sato, “Dynamics of HIV infection in lymphoid tissue network”, J. Math. Biol., 72 (2016), 909-938 · Zbl 1337.92131 · doi:10.1007/s00285-015-0940-x
[7] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Discrete Contin. Dynam. Syst. Ser., 13:9, 2365-2384, 2020 · Zbl 1451.92309 · doi:10.3934/dcdss.2020141
[8] N. V. Pertsev, “Globalnaya razreshimost i otsenki reshenii zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii s zapazdyvaniem, ispolzuemykh v modelyakh zhivykh sistem”, Sib. mat. zhurn., 59:1 (2018), 143-157
[9] J. Cosgrove, L. S.P. Hustin, R. J. de Boer, L. Perie, “Hematopoiesis in numbers”, Trends Immunol, 42:12 (2021), 1100-1112 · doi:10.1016/j.it.2021.10.006
[10] A. T. Haase, “Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues”, Annu. Rev. Immunol, 17 (1999), 625-656 · doi:10.1146/annurev.immunol.17.1.625
[11] R. M. Tsinkernagel, Osnovy immunologii, Mir, M., 2008
[12] A. A. Yarilin, Immunologiya, GEOTAR-Media, M., 2010
[13] T. Hapuarachchi, J. Lewis, R. E. Callard, “A mechanistic model for naive CD4 T cell homeostasis in healthy adults and children”, Front Immunol., 4 (2013), 366 · doi:10.3389/fimmu.2013.00366
[14] R. Sender, R. Milo, “The distribution of cellular turnover in the human body”, Nat. Med., 27:1 (2021), 45-48 · doi:10.1038/s41591-020-01182-9
[15] N. Vrisekoop, J. Drylewicz, R. Van Gent, T. Mugwagwa, S. F. Van Lelyveld, E. Veel, S. A. Otto, M. T. Ackermans, J. N. Vermeulen, H. H. Huidekoper, J. M. Prins, F. Miedema, R. J. de Boer, K. Tesselaar, J. A. Borghans, “Quantification of naive and memory T-cell turnover during HIV-1 infection”, AIDS, 29:16 (2015), 2071-2080 · doi:10.1097/QAD.0000000000000822
[16] M. C. Hunter, A. Teijeira, C. Halin, “T-cell trafficking through lymphatic vessels”, Front Immunol, 7 (2016), 613 · doi:10.3389/fimmu.2016.00613
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.