Skip to main content

Advertisement

Log in

Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Since their invention in 1994, fluorescent dyes such as carboxyfluorescein diacetate succinimidyl ester (CFSE) are used for cell proliferation analysis in flow cytometry. Importantly, the interpretation of such assays relies on the assumption that the label is divided equally between the daughter cells upon cell division. However, recent experimental studies indicate that division of cells is not perfectly symmetric and there is unequal distribution of protein between sister cell pairs. The uneven partition of protein or mass to daughter cells can lead to an overlap in the generations of CFSE-labelled cells with straightforward consequences for the resolution of individual generations. Numerous mathematical models developed so far for the analysis of CFSE proliferation assay incorporate the premise that the CFSE fluorescence intensity is halved in the two daughter cells. Here, we propose a novel modelling approach for the analysis of the CFSE cell proliferation assays which are characterized by poorly resolved peaks of cell generations in flow cytometric histograms. We formulate a mathematical model in the form of a system of delay hyperbolic partial differential equations which provides a good agreement with the CFSE histograms time-series data and allows an analytical treatment. The model is a further generalization of the recently proposed class of division- and label-structured models as it considers an asymmetric cell division. In addition, the basic structure of the cell cycle, i.e. the resting and cycling cell compartments, is taken into account. The model is used to estimate fundamental parameters such as activation rate, duration of the cell cycle, apoptosis rate, CFSE decay rate and asymmetry factor in cell division of monoclonal T cells during cognate interaction with dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbarian V, Wang W, Audet J (2012) Measurement of generation-dependent proliferation rates and death rates during mouse erythroid progenitor cell differentiation. Cytometry A 81(5):382–389

    Article  Google Scholar 

  • Andrew SM, Baker CTH, Bocharov GA (2007) Rival approaches to mathematical modelling in immunology. J Comput Appl Math 205:669–686

    Article  MATH  MathSciNet  Google Scholar 

  • Baker CTH, Bocharov GA, Paul CAH, Rihan FA (2005) Computational modelling with functional differential equations: identification, selection and sensitivity. Appl Numer Math 53:107–129

    Article  MATH  MathSciNet  Google Scholar 

  • Banks HT, Thompson WC (2012) Mathematical models of dividing cell populations: application to CFSE data. Math Model Nat Phenom 7(5):24–52

    Google Scholar 

  • Banks HT, Sutton KL, Thompson WC, Bocharov G, Roose D, Schenkel T, Meyerhans A (2011a) Estimation of cell proliferation dynamics using CFSE data. Bull Math Biol 70:116–150

  • Banks HT, Sutton KL, Thompson WC, Bocharov G, Doumic M, Schenkel T, Argilaguet J, Giest S, Peligero C, Meyerhans A (2011b) A new model for the estimation of cell proliferation dynamics using CFSE data. J Immunol Methods 373:143–160

    Article  Google Scholar 

  • Banks HT, Thompson WC, Peligero C, Giest S, Argilaguet J, Meyerhans A (2012) A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assay. CRSC-TR12-03, North Carolina State University

  • Banks HT, Kapraun DF, Thompson WC, Peligero C, Argilaguet J, Meyerhans A (2013a) A novel statistical analysis and interpretation of flow cytometry data. J Biol Dyn 7(1):96–132

    Article  Google Scholar 

  • Banks HT, Choi A, Huffman T, Nardini J, Poag L, Thompson WC (2013b) Quantifying CFSE label decay in flow cytometry data. Appl Math Lett 26(5):571–577

    Article  MATH  MathSciNet  Google Scholar 

  • Bergmann CC, Lane TE, Stohlman SA (2006) Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 4(2):121–132

    Article  Google Scholar 

  • Bernard S, Pujo-Menjouet L, Mackey MC (2003) Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys J 84(5):3414–3424

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference–a practical information-theoretic approach, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819):1687–1691

    Article  Google Scholar 

  • Ciocca ML, Barnett BE, Burkhardt JK, Chang JT, Reiner SL (2012) Cutting edge: asymmetric memory T cell division in response to rechallenge. J Immunol 188(9):4145–4148

    Article  Google Scholar 

  • De Boer RJ, Perelson AS (2005) Estimating division and death rates from CFSE data. J Comput Appl Math 184:140–164

    Article  MATH  MathSciNet  Google Scholar 

  • De Boer RJ, Perelson AS (2013) Quantifying T lymphocyte turnover. J Theor Biol 327:45–87

    Article  Google Scholar 

  • De Boer RJ, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson AS (2001) Recruitment times, proliferation, and apoptosis rates during the \(\text{ CD8 }^+\) T-cell response to lymphocytic choriomeningitis virus. J Virol 75(22):10663–10669

    Article  Google Scholar 

  • Fernandes RL, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez PE, Dutta A, Carlquist M, Bolic A, Schpper D, Brunetti AC, Helmark S, Heins AL, Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Martinussen J, Srensen SJ, Lantz AE, Gernaey KV (2011) Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 29(6):575–599

    Article  Google Scholar 

  • Ganusov VV, Pilyugin SS, de Boer RJ, Murali-Krishna K, Ahmed R, Antia R (2005) Quantifying cell turnover using CFSE data. J Immunol Methods 298(1–2):183–200

    Article  Google Scholar 

  • Gershenfeld N (2002) The nature of mathematical modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Gyllenberg M (1986) The size and scar distributions of the yeast Saccharomyces cerevisiae. J Math Biol 24:81–101

    Article  MATH  MathSciNet  Google Scholar 

  • Hadamard J (1932) Le probléme de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Hermann, Paris

    Google Scholar 

  • Hasenauer J, Schittler D, Allgöwer F (2012a) A computational model for proliferation dynamics of division- and label-structured populations. arXiv:1202.4923v1[q-bio.PE]

  • Hasenauer J, Schittler D, Allgöwer F (2012b) Analysis and simulation of division- and label-structured population models: a new tool to analyze proliferation assays. Bull Math Biol 74(11):2692–2732

    MATH  MathSciNet  Google Scholar 

  • Hawkins ED, Turner ML, Dowling MR, van Gend C, Hodgkin PD (2007) A model of immune regulation as a consequence of randomized lymphocyte division and death times. Proc Natl Acad Sci USA 104(12):5032–5037

    Article  Google Scholar 

  • Kendall DG (1948) On the role of variable generation time in the development of a stochastic birth process. Biometrika 35:316–330

    Article  MATH  MathSciNet  Google Scholar 

  • Knuth, KH (2006) Optimal data-based binning for histograms. arXiv:physics/0605197 [physics.data-an]

  • Ko KH, Odell R, Nordon RE (2007) Analysis of cell differentiation by division tracking cytometry. Cytometry A 71(10):773–782

    Article  Google Scholar 

  • Kosarev EL, Pantos E (1983) Optimal smoothing of ‘noisy’ data by fast Fourier transform. J Phys E Sci Instrum 16:537–543

    Article  Google Scholar 

  • Lee HY, Hawkins E, Zand MS, Mosmann T, Wu H, Hodgkin PD, Perelson AS (2009) Interpreting CFSE obtained division histories of B cells in vitro with Smith–Martin and cyton type models. Bull Math Biol 71(7):1649–1670

    Article  MATH  MathSciNet  Google Scholar 

  • Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM, Bocharov G (2004) Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur J Immunol 34:2407–2418

    Article  Google Scholar 

  • Luzyanina T, Mrusek S, Edwards JT, Roose D, Ehl S, Bocharov G (2007a) Computational analysis of CFSE proliferation assay. J Math Biol 54(1):57–89

    Article  MATH  MathSciNet  Google Scholar 

  • Luzyanina T, Roose D, Schenkel T, Sester M, Ehl S, Meyerhans A, Bocharov G (2007b) Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor Biol Med Model 24:4–26

    Google Scholar 

  • Luzyanina T, Roose D, Bocharov G (2009) Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data. J Math Biol 59(5):581–603

    Article  MATH  MathSciNet  Google Scholar 

  • Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–154

    Article  Google Scholar 

  • Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171(1):131–137

    Article  Google Scholar 

  • Mackey MC, Rudnicki R (1994) Global stability in a delayed partial differential equation describing cellular replication. J Math Biol 33:89–109

    Article  MATH  MathSciNet  Google Scholar 

  • Mantzaris NV (2006) Stochastic and deterministic simulations of heterogeneous cell population dynamics. J Theor Biol 241(3):690–706

    Article  MathSciNet  Google Scholar 

  • Mantzaris NV (2007) From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys J 92(12):4271–4288

    Article  Google Scholar 

  • Mantzaris NV, Liou J, Daoutidis P, Srienc F (1999) Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration. J Biotechnol 71:157–174

    Article  Google Scholar 

  • Matera G, Lupi M, Ubezio P (2004) Heterogeneous cell response to topotecan in a CFSE-based proliferation test. Cytometry A 62(2):118–128

    Article  Google Scholar 

  • McKendrick AG (1925) Applications of mathematics to medical problems. Proc Edinb Math Soc 44:98–130

    Article  Google Scholar 

  • Metzger P (2012) A unified growth model for division-, age- and label-structured cell populations. University of Stuttgart, Stuttgart, Germany, Diploma Thesis

  • Metzger P, Hasenauer J, Allgöwer F (2012) Modeling and analysis of division-, age-, and label-structured cell populations. In: Proceedings of the 9th workshop on computational systems biology (WCSB), vol 9, Ulm, Germany

  • Miao H, Jin X, Perelson AS, Wu H (2012) Evaluation of multitype mathematical models for CFSE-labeling experiment data. Bull Math Biol 74(2):300–326

    Article  MATH  MathSciNet  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  Google Scholar 

  • Nordon RE, Nakamura M, Ramirez C, Odell R (1999) Analysis of growth kinetics by division tracking. Immunol Cell Biol 77(6):523–529

    Article  Google Scholar 

  • Nordon RE, Ko KH, Odell R, Schroeder T (2011) Multi-type branching models to describe cell differentiation programs. J Theor Biol 277(1):7–18

    Article  Google Scholar 

  • Pagliara D, Savoldo B (2012) Cytotoxic T lymphocytes for the treatment of viral infections and posttransplant lymphoproliferative disorders in transplant recipients. Curr Opin Infect Dis 25(4):431–437

    Article  Google Scholar 

  • Pilyugin SS, Ganusov VV, Murali-Krishna K, Ahmed R, Antia R (2003) The rescaling method for quantifying the turnover of cell populations. J Theor Biol 225(2):275–83

    Article  MathSciNet  Google Scholar 

  • Quah BJ, Parish CR (2012) New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J Immunol Methods 379(1–2):1–14

    Article  Google Scholar 

  • Roederer M (2011) Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A 79(2):95–101

    Article  Google Scholar 

  • Schittler D, Hasenauer J, Allgöwer F (2011) A generalized model for cellproliferation: Integrating division numbers and label dynamics. In: Proceedings of the eight international workshop on computationalsystems biology (WCSB, 2011), Zurich, Switzerland, pp 165–168

  • Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3):605–610

    Article  MATH  MathSciNet  Google Scholar 

  • Sennerstam R (1988) Partition of protein (mass) to sister cell pairs at mitosis: a re-evaluation. J Cell Sci 90(2):301–306

    Google Scholar 

  • Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70(4):1263–1267

    Article  Google Scholar 

  • Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21(153):65–66

    Article  Google Scholar 

  • Taylor CC (1987) Akaike’s information criterion and the histogram. Biometrika 74(3):636–639

    Article  MATH  MathSciNet  Google Scholar 

  • Thompson WC (2011) Partial differential equation modelling of flow cytometry data from CFSE-based proliferation assays. PhD Dissertation. Department of Mathematics, North Carolina State University, Raleigh

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston & Sons, Washington, DC

    MATH  Google Scholar 

  • Venzon DJ, Moolgavkar SH (1988) A method for computing profile-likelihood-based confidence intervals. Appl Stat 37(1):87–94

    Article  Google Scholar 

  • Wallace PK, Tario JD Jr, Fisher JL, Wallace SS, Ernstoff MS, Muirhead KA (2008) Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 73(11):1019–1034

    Article  Google Scholar 

  • Wand MP (1997) Data-based choice of histograms bin width. Am Stat 51(1):59–64

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of this work provided by the Swiss National Science Foundation, the Von-Tobel Foundation (Zurich), the Russian Foundation of Basic Research (11-01-00117a), the Programme of the Russian Academy of Sciences (Basic research for Medicine) and by the Swedish Institute, Visby Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Luzyanina.

Appendix

Appendix

In this appendix, we give the proof of Lemma 1 and Theorem 1.

Proof of Lemma 1

We use a sequential time integration of the chain of linear non-autonomous ordinary differential equations (which the delay equations are reduced to) to compute solutions \(N_0^r(t),~N_1^r(t)\) and \(N_i^c(t),~i=0,1,\ldots ,i_r-1,\) of the model (3). The method of mathematical induction is applied to compute solutions \(N_i^r(t),~i=2,\ldots ,i_r\).

To simplify formulas, let \(c_i: = \alpha _i+\beta _i,~c_i \ne c_k\) for \(i \ne k,~i=0,1,\ldots ,i_r\), \(T_i:= \sum _{j=0}^i \tau _j,~i=0,1,\ldots ,i_r-1\), \(F_i:= 2^i N^0 \prod _{j=0}^{i-1} \alpha _j\) and \(G_{i,j} := \prod _{k=0, k \ne j}^i(c_k-c_j)^{-1},~i=1,\ldots ,i_r\).

The first equation of model (3) is a linear ODE. Time integration of this equation gives

$$\begin{aligned} N_0^r(t)=N^0\mathrm{e}^{-c_0t}, \quad t\ge 0, \end{aligned}$$
(34)

where \(N^0=N_0^r(0)\) is the given initial condition. Substitution of (34) into the equation for \(N_1^r(t)\) gives a linear non-autonomous ODE,

$$\begin{aligned} \frac{\mathrm{d}N_1^r(t)}{\mathrm{d}t} = -c_1N_1^r(t)+2\alpha _0N_0^r(t-T_0)= -c_1N_1^r(t)+2\alpha _0 N^0\mathrm{e}^{-c_0(t-T_0)}. \end{aligned}$$
(35)

Time integration of this equation gives

$$\begin{aligned} N_1^r(t)&= 0, \quad t \in [0,T_0),\nonumber \\ N_1^r(t)&= 2\alpha _0 N^0(\mathrm{e}^{c_0(T_0-t)}(c_1-c_0)^{-1} + \mathrm{e}^{c_1(T_0-t)}(c_0-c_1)^{-1})\nonumber \\&= F_1 \sum _{j=0}^1 \mathrm{e}^{c_j (T_0 - t)} G_{1,j}, \quad t \ge T_0, \end{aligned}$$
(36)

where the first equality is due to the initial condition \(N_0^r(t-T_0)=0\) for \(t \in [0,T_0)\) which reduces non-autonomous ODE (35) to an autonomous ODE with zero initial condition \(N_1^r(0)=0\).

Now we assume that \(N_i^r(t)\), defined by

$$\begin{aligned} N_i^r(t) = 0, \quad t \in [0,T_{i-1}), \quad N_i^r(t) = F_i\sum _{j=0}^i \mathrm{e}^{c_j (T_{i-1} - t)} G_{i,j}, \quad t \ge T_{i-1}, \end{aligned}$$
(37)

solves the equation for \(N_i^r(t)\) in (3). We have to prove that

$$\begin{aligned} N_{i+1}^r(t) = 0, \quad t \in [0,T_{i}), \quad N_{i+1}^r(t) = F_{i+1} \sum _{j=0}^{i+1} \mathrm{e}^{c_j (T_{i} - t)} G_{i+1,j}, \quad t \ge T_{i}\qquad \end{aligned}$$
(38)

solves the equation for \(N_{i+1}^r(t)\) in (3). For this, we substitute (37) in the equation for \(N_{i+1}^r(t)\) in (3) and obtain

$$\begin{aligned} \frac{\mathrm{d}N_{i+1}^r(t)}{\mathrm{d}t} = -c_{i+1} N_{i+1}^r(t) + F_{i+1} \sum _{j=0}^{i} \mathrm{e}^{c_j (T_{i} - t)} G_{i,j}, \quad t \ge T_i, \end{aligned}$$
(39)

and \(N_{i+1}^r(t) = 0,~t \in [0,T_{i})\). Here we used that \(F_{i+1}=2 \alpha _{i} F_i\). Equation (39) is a linear ODE. Time integration of this equation (a number of standard steps) shows that \(N_{i+1}^r(t)\) defined by (38) is its solution.

The solutions \(N_i^c(t),~i=0,1,\ldots ,i_r-1,\) are obtained by the time integration of the corresponding equations. Namely, \(N_0^c(t)\) is computed as

$$\begin{aligned} N_0^c(t)= \alpha _0 \left( \int _0^t N_0^r(s)~\mathrm{d}s -\int _{0}^t N_0^r(s-T_0)~\mathrm{d}s\right) . \end{aligned}$$
(40)

Since \(N_0^r(t-T_0) = 0\) for \(t \in [0,T_0)\), the second integral in (40) is equal to zero for \(t \in [0,T_0)\) and we obtain

$$\begin{aligned} N_0^c(t)= \alpha _0 N^0 \int _0^t \mathrm{e}^{-c_0s}~\mathrm{d}s= \alpha _0 N^0 (1-\mathrm{e}^{-c_0 t})c_0^{-1}, \quad t \in [0,T_0), \end{aligned}$$
(41)

and

$$\begin{aligned} N_0^c(t)&= \alpha _0 N^0 \left( \int _0^t \mathrm{e}^{-c_0s}~\mathrm{d}s -\int _{T_0}^t\mathrm{e}^{-c_0(s-T_0)}~\mathrm{d}s\right) \nonumber \\&= \alpha _0 N^0 (\mathrm{e}^{c_0 (T_{0} - t)}-\mathrm{e}^{-c_0 t})c_0^{-1}, \quad t \ge T_0. \end{aligned}$$
(42)

Similarly, we integrate the equation for \(N_i^c(t),~i\ge 1\), using (37) and that \(N_i^r(t-\tau _i) = 0\) for \(t \in [0,T_i)\),

$$\begin{aligned} N_i^c(t)=\alpha _i \int _{T_{i-1}}^t N_i^r(s)~\mathrm{d}s = \alpha _i F_i \sum _{j=0}^i (1 - \mathrm{e}^{c_j(T_{i-1}-t)})c_j^{-1}G_{i,j}, \quad t \in [T_{i-1},T_i),\nonumber \\ \end{aligned}$$
(43)

and

$$\begin{aligned} N_i^c(t)&= \alpha _i \left( \int _{T_{i-1}}^t N_i^r(s)~\mathrm{d}s -\int _{T_i}^t N_i^r(s-\tau _i)~\mathrm{d}s\right) \nonumber \\&= \alpha _i F_i\left( \sum _{j=0}^i (1-\mathrm{e}^{c_j(T_{i-1}-t)}) c_j^{-1}G_{i,j}-\sum _{j=0}^i(1-\mathrm{e}^{c_j(T_{i}-t)})c_j^{-1} G_{i,j}\right) \nonumber \\&= \alpha _i F_i \sum _{j=0}^i (\mathrm{e}^{c_j(T_{i}-t)} - \mathrm{e}^{c_j(T_{i-1}-t)})c_j^{-1}G_{i,j},\quad t\ge T_i. \end{aligned}$$
(44)

The proof is complete. \(\square \)

Proof of Theorem 1

Although the idea of the proof is the same as the one for Theorem 1 in Schittler et al. (2011), Hasenauer et al. (2012a); Hasenauer et al. (2012b), we present the proof in detail since model (5) differs from the one in Schittler et al. (2011), Hasenauer et al. (2012a); Hasenauer et al. (2012b). The plan of the proof is the following: (a) we substitute the functions (13),

$$\begin{aligned}&n_i^r(t,x) = N_i^r(t) p_i(t,x),\quad i=0,1,\ldots ,i_r,\\&n_i^c(t,x) = N_i^c(t) p_i(t,x),\quad i=0,1,\ldots ,i_r-1, \end{aligned}$$

into model (5); (b) we use the Eqs. (3) and (14) to obtain, from the result of (a), a certain equality for \(p_i(t,x)\); (c) we solve the hyperbolic PDE (14) for \(p_i(t,x)\) to show that the equality for \(p_i(t,x)\) obtained in (b) is correct. This completes the proof. Below we present the proof for \(i \ge 1\), the proof for \(i=0\) is analogous.

(a) Substitution of the above expressions for \(n_i^r(t,x)\) and \(n_i^c(t,x)\) into model (5) gives

$$\begin{aligned}&\frac{\mathrm{d}N_i^r(t)}{\mathrm{d}t}p_i(t,x)+N_i^r(t)\left( \frac{\partial p_i(t,x)}{\partial t}-k \frac{\partial (x p_i(t,x))}{\partial x} \right) \nonumber \\&\quad =-(\alpha _i+\beta _i)N_i^r(t)p_i(t,x)+\alpha _{i-1}\mathrm{e}^{k \tau _{i-1}} \nonumber \\&\qquad \times \left( \frac{1}{m_1}N_{i-1}^r(t-\tau _{i-1})p_{i-1}\left( t-\tau _{i-1},\frac{e^{k \tau _{i-1}}x}{m_1}\right) \right. \nonumber \\&\qquad \left. +\frac{1}{m_2}N_{i-1}^r(t-\tau _{i-1})p_{i-1} \left( t-\tau _{i-1},\frac{e^{k \tau _{i-1}}x}{m_2}\right) \right) , \quad i=1,\ldots ,i_r, \end{aligned}$$
(45)

and

$$\begin{aligned}&\frac{\mathrm{d}N_i^c(t)}{\mathrm{d}t}p_i(t,x)+N_i^c(t)\left( \frac{\partial p_i(t,x)}{\partial t}-k \frac{\partial (x p_i(t,x))}{\partial x}\right) \nonumber \\&\quad =-\alpha _i (N_i^r(t)p_i(t,x)-\mathrm{e}^{k \tau _{i}}N_i^r(t-\tau _i)p_i(t-\tau _i,\mathrm{e}^{k \tau _i}x)),\quad i=1,\ldots ,i_r-1.\nonumber \\ \end{aligned}$$
(46)

(b) Putting the term in brackets on the left hand side of equations (45)–(46) to zero due to (14) and using the Eq. (3) for \(\mathrm{d}N_i^r(t)/\mathrm{d}t\) and \(\mathrm{d}N_i^c(t)/\mathrm{d}t\), the expressions (45)–(46) are reduced to

$$\begin{aligned}&p_i(t,x)\nonumber \\&\quad = \frac{\mathrm{e}^{k \tau _{i-1}}}{2} \left( \frac{1}{m_1} p_{i-1}\left( t-\tau _{i-1},\frac{\mathrm{e}^{k\tau _{i-1}}x}{m_1}\right) +\frac{1}{m_2} p_{i-1}\left( t-\tau _{i-1},\frac{\mathrm{e}^{k \tau _{i-1}} x}{m_2}\right) \right) ,\nonumber \\ \end{aligned}$$
(47)

respectively,

$$\begin{aligned} p_i(t,x) = \mathrm{e}^{k \tau _i} p_i(t-\tau _i,\mathrm{e}^{k \tau _i}x). \end{aligned}$$
(48)

(c) The method of characteristics applied to hyperbolic PDE (14) gives

$$\begin{aligned} p_i(t,x)=\mathrm{e}^{kt}p_i(0,\mathrm{e}^{kt}x), \quad i=0,1,\ldots , i_r. \end{aligned}$$
(49)

Using the initial condition for \(p_i(0,x)\) from (15), the solution \(p_i(t,x)\) of PDE (14) is

$$\begin{aligned} p_i(t,x)&= \mathrm{e}^{kt}p_i(0,\mathrm{e}^{kt}x)\nonumber \\&= \frac{\mathrm{e}^{k t}}{2}\left( \frac{1}{m_1} p_{i-1}\left( 0,\frac{\mathrm{e}^{k t}x}{m_1}\right) +\frac{1}{m_2} p_{i-1}\left( 0,\frac{\mathrm{e}^{kt}x}{m_2}\right) \right) ,\quad i=1,\ldots ,i_r.\nonumber \\ \end{aligned}$$
(50)

As follows from (49),

$$\begin{aligned} p_{i-1}\left( t-\tau _{i-1},\frac{\mathrm{e}^{k\tau _{i-1}}x}{m_1}\right) = \mathrm{e}^{k(t-\tau _{i-1})} p_{i-1}\left( 0,\frac{\mathrm{e}^{kt}x}{m_1}\right) \end{aligned}$$
(51)

and

$$\begin{aligned} p_{i-1}\left( t-\tau _{i-1},\frac{\mathrm{e}^{k\tau _{i-1}}x}{m_2}\right) = \mathrm{e}^{k(t-\tau _{i-1})} p_{i-1}\left( 0,\frac{\mathrm{e}^{kt}x}{m_2}\right) . \end{aligned}$$
(52)

If we multiply (51) and (52) by \(\mathrm{e}^{k\tau _{i-1}}/2m_1\) and \(\mathrm{e}^{k\tau _{i-1}}/2m_2\), respectively, and sum the two equalities, we obtain,

$$\begin{aligned}&\frac{\mathrm{e}^{k \tau _{i-1}}}{2}\left( \frac{1}{m_1} p_{i-1}\left( t-\tau _{i-1},\frac{\mathrm{e}^{k \tau _{i-1}}x}{m_1}\right) + \frac{1}{m_2} p_{i-1}\left( t-\tau _{i-1},\frac{\mathrm{e}^{k \tau _{i-1}}x}{m_2}\right) \right) \nonumber \\&\quad =\frac{\mathrm{e}^{kt}}{2}\left( \frac{1}{m_1} p_{i-1}\left( 0,\frac{\mathrm{e}^{kt}x}{m_1}\right) + \frac{1}{m_2}p_{i-1}\left( 0,\frac{\mathrm{e}^{kt}x}{m_2}\right) \right) =p_i(t,x), \end{aligned}$$
(53)

where the last equality is due to (50). Hence, the equality (47) is correct and \(n_i^r(t,x) = N_i^r(t) p_i(t,x),~i=1,\ldots ,i_r\), is the solution of model (5).

The equality (48) is correct due to (49). Namely,

$$\begin{aligned} \mathrm{e}^{k \tau _i} p_i(t-\tau _i,\mathrm{e}^{k \tau _i}x) = \mathrm{e}^{k \tau _i}( \mathrm{e}^{k(t-\tau _i)} p_i(0,\mathrm{e}^{k\tau _i}\mathrm{e}^{k(t-\tau _i)}x))= \mathrm{e}^{kt}p_i(0,\mathrm{e}^{kt}x)= p_i(t,x). \end{aligned}$$

Hence, \(n_i^c(t,x)=N_i^c(t) p_i(t,x),~i=1,\ldots ,i_r-1,\) is the solution of model (5). The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzyanina, T., Cupovic, J., Ludewig, B. et al. Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division. J. Math. Biol. 69, 1547–1583 (2014). https://doi.org/10.1007/s00285-013-0741-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0741-z

Keywords

Mathematics Subject Classification (2000)

Navigation