×

An adaptive difference method for variable-order diffusion equations. (English) Zbl 1543.65135

Summary: An adaptive finite difference scheme for variable-order fractional-time subdiffusion equations in the Caputo form is studied. The fractional-time derivative is discretized by the L1 procedure but using nonhomogeneous timesteps. The size of these timesteps is chosen by an adaptive algorithm to keep the local error bounded around a preset value, a value that can be chosen at will. For some types of problems, this adaptive method is much faster than the corresponding usual method with fixed timesteps while keeping the local error of the numerical solution around the preset values. These findings turn out to be similar to those found for constant-order fractional diffusion equations.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Adel, M., Finite difference approach for variable order reaction-subdiffusion equations, Adv. Differ. Equ., 2018, 406, 2018 · Zbl 1448.65199 · doi:10.1186/s13662-018-1862-x
[2] Alikhanov, AA, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438, 2015 · Zbl 1349.65261 · doi:10.1016/j.jcp.2014.09.031
[3] Cao, J.; Qiu, Y.; Song, G., A compact finite difference scheme for variable order subdiffusion equation, Commun. Nonlinear Sci. Numer. Simul., 48, 140-149, 2017 · Zbl 1524.65323 · doi:10.1016/j.cnsns.2016.12.022
[4] Carslaw, HS; Jaeger, JC, Conduction of Heat in Solids, 1959, Oxford: Clarendon Press, Oxford
[5] Chechkin, AV; Gonchar, VY; Klafter, J.; Metzler, R., Barrier crossing of a Lévy flight, Europhys. Lett., 72, 348-354, 2005 · doi:10.1209/epl/i2005-10265-1
[6] Diethelm, K., The Analysis of Fractional Differential Equations, 2010, Berlin: Springer, Berlin · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[7] Eriksson, K.; Johnson, C.; Logg, A.; Stein, E.; Borst, R.; Hughes, TJR, Adaptive computational methods for parabolic problems, Encyclopedia of Computational Mechanics, 2017, Hoboken: Wiley, Hoboken
[8] Fan, L.; Yan, Y.; Nikolov, G.; Kolkovska, N.; Georgiev, K., A high order numerical method for solving nonlinear fractional differential equation with non-uniform meshes, Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science, 2019, London: Springer, London · Zbl 07062830
[9] Fazio, R.; Jannelli, A.; Agreste, S., A finite difference method on non-uniform meshes for time-fractional advection-diffusion equations with a source term, Appl. Sci., 8, 960, 2018 · doi:10.3390/app8060960
[10] Fedotov, S.; Han, D., Asymptotic behavior of the solution of the space dependent variable order fractional diffusion equation: ultraslow anomalous aggregation, Phys. Rev. Lett., 123, 050602, 2019 · doi:10.1103/PhysRevLett.123.050602
[11] Fedotov, S.; Han, D.; Zubarev, AY; Johnston, M.; Allan, VJ, Variable-order fractional master equation and clustering of particles, non-uniform lysosome distribution, Philos. Trans. R. Soc. A, 379, 20200317, 2021 · doi:10.1098/rsta.2020.0317
[12] Ford, NJ; Yan, Y., An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data, Fract. Calculus, 20, 1076-1105, 2017 · Zbl 1377.65102 · doi:10.1515/fca-2017-0058
[13] Gao, GH; Sun, ZZ; Zhang, HW, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50, 2014 · Zbl 1349.65088 · doi:10.1016/j.jcp.2013.11.017
[14] Garrappa, R.; Kaslik, E.; Popolizio, M., Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial, Mathematics, 7, 407, 2019 · doi:10.3390/math7050407
[15] Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H., On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69, 119-133, 2018 · Zbl 1509.65071 · doi:10.1016/j.cnsns.2018.09.004
[16] Hao, ZP; Lin, G.; Sun, ZZ, A high-order difference scheme for the fractional sub-diffusion equation, Int. J. Comput. Math., 94, 405-426, 2017 · Zbl 1364.65164 · doi:10.1080/00207160.2015.1109642
[17] Havlin, S.; Ben-Avraham, D., Diffusion in disordered media, Adv. Phys., 36, 695-798, 1987 · doi:10.1080/00018738700101072
[18] Jannelli, A., A novel adaptive procedure for solving fractional differential equations, J. Comput. Sci., 47, 101220, 2020 · doi:10.1016/j.jocs.2020.101220
[19] Jannelli, A., Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations, Commun. Nonlinear Sci. Numer. Simul., 105, 106073, 2021 · Zbl 07443082 · doi:10.1016/j.cnsns.2021.106073
[20] Ji, B.; Liao, HL; Gong, Y.; Zhang, L., Adaptive second-order Crank-Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models, SIAM J. Sci. Comput., 42, B738-B760, 2020 · Zbl 1464.35229 · doi:10.1137/19M1259675
[21] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 2006, Oxford: Elsevier Science, Oxford · Zbl 1092.45003
[22] Klafter, J.; Lim, SC; Metzler, R., Fractional Dynamics, 2011, Singapore: World Scientific, Singapore · doi:10.1142/8087
[23] Klages, R.; Radons, G.; Sokolov, IM, Anomalous Transport, Foundations and Applications, 2008, Hoboken: Wiley, Hoboken
[24] Le Vot, F.; Escudero, C.; Abad, E.; Yuste, SB, Continuous-time random walks and Fokker-Planck equation in expanding media, Phys. Rev. E, 98, 042117, 2018 · doi:10.1103/PhysRevE.98.042117
[25] Li, C.; Zeng, F., Numerical Methods for Fractional Calculus, 2015, London: Chapman and Hall, London · Zbl 1326.65033 · doi:10.1201/b18503
[26] Li, C.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631, 2016 · Zbl 1349.65246 · doi:10.1016/j.jcp.2016.04.039
[27] Li, C.; Chen, A., Numerical methods for fractional partial differential equations, Int. J. Comput. Math., 95, 1048-1099, 2018 · Zbl 1513.65291 · doi:10.1080/00207160.2017.1343941
[28] Liao, HL; Zhang, YN; Zhao, Y.; Shi, HS, Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractional subdiffusion equations, J. Sci. Comput., 61, 629-648, 2014 · Zbl 1339.65150 · doi:10.1007/s10915-014-9841-1
[29] Liao, HL; Tang, T.; Zhou, T., A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations, J. Comput. Phys., 414, 1-16, 2020 · Zbl 1440.65116 · doi:10.1016/j.jcp.2020.109473
[30] Liu, Y.; Roberts, J.; Yan, Y., A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes, Int. J. Comput. Math., 95, 1151-1160, 2018 · Zbl 1499.65338 · doi:10.1080/00207160.2017.1381691
[31] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 23-28, 1996 · Zbl 0879.35036 · doi:10.1016/0893-9659(96)00089-4
[32] Metzler, R.; Barkai, E.; Klafter, J., Anomalous transport in disordered systems under the influence of external fields, Physica A, 266, 343-350, 1999 · doi:10.1016/S0378-4371(98)00614-1
[33] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77, 2000 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[34] Oldham, K.; Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, 1974, New York: Academic Press, New York · Zbl 0292.26011
[35] Patnaik, S.; Hollkamp, JP; Semperlotti, F., Applications of variable-order fractional operators: a review, Proc. R. Soc. A Math. Phys. Eng. Sci., 476, 20190498, 2020 · Zbl 1439.26028
[36] Podlubny, I., Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, 1999, New York: Academic Press, New York · Zbl 0924.34008
[37] Podlubny, I.; Skovranek, T.; Vinagre Jara, BM; Petras, I.; Verbitsky, V.; Chen, YQ, Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders, Philos. Trans. R. Soc. A, 371, 20120153, 2013 · Zbl 1339.65094 · doi:10.1098/rsta.2012.0153
[38] Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP, Numerical Recipes, The Art of Scientific Computing, 2007, Cambridge: Cambridge University Press, Cambridge
[39] Qiao, H.; Cheng, A., Finite difference method on non-uniform meshes for time fractional diffusion problem, Comput. Methods Appl. Math., 21, 899-911, 2021 · Zbl 1476.65187 · doi:10.1515/cmam-2020-0077
[40] Quintana-Murillo, J.; Yuste, SB, A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations, Eur. Phys. J. Spec. Top., 222, 1987-1998, 2013 · doi:10.1140/epjst/e2013-01979-7
[41] Schneider, WR; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 134-144, 1989 · Zbl 0692.45004 · doi:10.1063/1.528578
[42] Sokolov, IM; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 48-54, 2002 · doi:10.1063/1.1535007
[43] Sokolov, IM; Klafter, J., From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos, 15, 026103, 2005 · Zbl 1080.82022 · doi:10.1063/1.1860472
[44] Stynes, M.; O’Riordan, E.; Gracia, JL, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079, 2017 · Zbl 1362.65089 · doi:10.1137/16M1082329
[45] Sun, H.; Chang, A.; Zhang, Y.; Chen, W., A review on variable-order fractional differential equations, mathematical foundations, physical models, numerical methods and applications, Fract. Calculus, 22, 27-59, 2019 · Zbl 1428.34001 · doi:10.1515/fca-2019-0003
[46] Sun, H.; Cao, W., A fast temporal second-order difference scheme for the time-fractional subdiffusion equation, Numer. Methods Partial Differ. Equ., 37, 1825-1846, 2021 · Zbl 07776047 · doi:10.1002/num.22612
[47] Wang, Y.; Yan, Y.; Yan, Y.; Pani, AK, Higher order time stepping methods for subdiffusion problems based on weighted and shifted Grünwald-Letnikov formulae with nonsmooth data, J. Sci. Comput., 83, 40, 2020 · Zbl 1447.65032 · doi:10.1007/s10915-020-01223-y
[48] Xing, Y.; Yan, Y., A higher order numerical method for time fractional partial differential equations with nonsmooth data, J. Comput. Phys., 357, 305-323, 2018 · Zbl 1381.35232 · doi:10.1016/j.jcp.2017.12.035
[49] Yuste, SB; Quintana-Murillo, J., A finite difference method with non-uniform timesteps for fractional diffusion equations, Comput. Phys. Commun., 183, 2594-2600, 2012 · Zbl 1268.65120 · doi:10.1016/j.cpc.2012.07.011
[50] Yuste, SB; Quintana-Murillo, J., Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations, Numer. Algorithms, 71, 207-228, 2016 · Zbl 1335.65075 · doi:10.1007/s11075-015-9998-1
[51] Zeng, F.; Li, C.; Liu, F.; Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37, A55-A78, 2015 · Zbl 1334.65162 · doi:10.1137/14096390X
[52] Zhang, YN; Sun, ZZ; Liao, HL, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265, 195-210, 2014 · Zbl 1349.65359 · doi:10.1016/j.jcp.2014.02.008
[53] Zhang, J.; Huang, J.; Wang, K.; Wang, X., Error estimate on the tanh meshes for the time fractional diffusion equation, Numer. Methods Partial Differ. Equ., 37, 2046-2066, 2021 · Zbl 07776059 · doi:10.1002/num.22656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.