×

Group linear non-Gaussian component analysis with applications to neuroimaging. (English) Zbl 1543.62656

Summary: Independent component analysis (ICA) is an unsupervised learning method popular in functional magnetic resonance imaging (fMRI). Group ICA has been used to search for biomarkers in neurological disorders including autism spectrum disorder and dementia. However, current methods use a principal component analysis (PCA) step that may remove low-variance features. Linear non-Gaussian component analysis (LNGCA) enables simultaneous dimension reduction and feature estimation including low-variance features in single-subject fMRI. A group LNGCA model is proposed to extract group components shared by more than one subject. Unlike group ICA methods, this novel approach also estimates individual (subject-specific) components orthogonal to the group components. To determine the total number of components in each subject, a parametric resampling test is proposed that samples spatially correlated Gaussian noise to match the spatial dependence observed in data. In simulations, estimated group components achieve higher accuracy compared to group ICA. The method is applied to a resting-state fMRI study on autism spectrum disorder in 342 children (252 typically developing, 90 with autism), where the group signals include resting-state networks. The discovered group components appear to exhibit different levels of temporal engagement in autism versus typically developing children, as revealed using group LNGCA. This novel approach to matrix decomposition is a promising direction for feature detection in neuroimaging.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62H25 Factor analysis and principal components; correspondence analysis
62R07 Statistical aspects of big data and data science

Software:

neuRosim; JIVE; ICtest

References:

[1] Allen, E. A.; Erhardt, E. B.; Damaraju, E.; Gruner, W.; Segall, J. M.; Silva, R. F.; Havlicek, M.; Rachakonda, S.; Fries, J.; Kalyanam, R., A baseline for the multivariate comparison of resting-state networks, Front. Syst. Neurosci., 5, 2 (2011)
[2] Beckmann, C. F., Modelling with independent components, NeuroImage, 62, 2, 891-901 (2012)
[3] Beckmann, C. F.; Mackay, C. E.; Filippini, N.; Smith, S. M., Group comparison of resting-state fmri data using multi-subject ica and dual regression, NeuroImage, 47, Suppl 1, S148 (2009)
[4] Beckmann, C. F.; Smith, S. M., Probabilistic independent component analysis for functional magnetic resonance imaging, IEEE Trans. Med. Imaging, 23, 2, 137-152 (2004)
[5] Bell, A. J.; Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution, Neural Comput., 7, 6, 1129-1159 (1995)
[6] Bickel, P. J.; Kur, G.; Nadler, B., Projection pursuit in high dimensions, Proc. Natl. Acad. Sci., 115, 37, 9151-9156 (2018) · Zbl 1416.62320
[7] Braga, R. M.; Buckner, R. L., Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity, Neuron, 95, 2, 457-471 (2017)
[8] Calhoun, V. D.; Adali, T.; Pearlson, G. D.; Pekar, J., A method for making group inferences from functional mri data using independent component analysis, Hum. Brain Mapp., 14, 3, 140-151 (2001)
[9] Calhoun, V. D.; Eichele, T.; Pearlson, G., Functional brain networks in schizophrenia: a review, Front. Human Neurosci., 3, AUG, 17 (2009)
[10] Cardoso, J.-F., Source separation using higher order moments, (International Conference on Acoustics, Speech, and Signal Processing (1989), IEEE), 2109-2112
[11] Chen, Z.; Calhoun, V., Effect of spatial smoothing on task fMRI ICA and functional connectivity, Front. Neurosci., 12, FEB, 15 (2018)
[12] Coalson, T. S.; Van Essen, D. C.; Glasser, M. F., The impact of traditional neuroimaging methods on the spatial localization of cortical areas, Proc. Natl. Acad. Sci. USA, 115, 27, E6356-E6365 (2018)
[13] Correa, N.; Adalı, T.; Calhoun, V. D., Performance of blind source separation algorithms for fmri analysis using a group ica method, Magn. Reson. Imaging, 25, 5, 684-694 (2007)
[14] Du, Y.; Fan, Y., Group information guided ica for fmri data analysis, NeuroImage, 69, 157-197 (2013)
[15] Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., Salman, M., Rahaman, M.A., Abrol, A., Chen, J., et al., 2019. Neuromark: a fully automated ica method to identify effective fmri markers of brain disorders. medRxiv, p. 19008631.
[16] Du, Y.; Pearlson, G. D.; Lin, D.; Sui, J.; Chen, J.; Salman, M.; Tamminga, C. A.; Ivleva, E. I.; Sweeney, J. A.; Keshavan, M. S., Identifying dynamic functional connectivity biomarkers using gig-ica: application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder, Hum. Brain Mapp., 38, 5, 2683-2708 (2017)
[17] Eloyan, A.; Crainiceanu, C. M.; Caffo, B. S., Likelihood-based population independent component analysis, Biostatistics, 14, 3, 514-527 (2013)
[18] Erhardt, E. B.; Rachakonda, S.; Bedrick, E. J.; Allen, E. A.; Adali, T.; Calhoun, V. D., Comparison of multi-subject ica methods for analysis of fmri data, Hum. Brain Mapp., 32, 12, 2075-2095 (2011)
[19] Feng, Q.; Jiang, M.; Hannig, J.; Marron, J., Angle-based joint and individual variation explained, J. Multivar. Anal., 166, 241-265 (2018) · Zbl 1408.62113
[20] Gaynanova, I.; Li, G., Structural learning and integrative decomposition of multi-view data, Biometrics, 75, 4, 1121-1132 (2019) · Zbl 1448.62163
[21] Gordon, E. M.; Laumann, T. O.; Gilmore, A. W.; Newbold, D. J.; Greene, D. J.; Berg, J. J.; Ortega, M.; Hoyt-Drazen, C.; Gratton, C.; Sun, H.; Hampton, J. M.; Coalson, R. S.; Nguyen, A. L.; McDermott, K. B.; Shimony, J. S.; Snyder, A. Z.; Schlaggar, B. L.; Petersen, S. E.; Nelson, S. M.; Dosenbach, N. U., Precision functional mapping of individual human brains, Neuron, 95, 4, 791-807 (2017)
[22] Guo, Y., A general probabilistic model for group independent component analysis and its estimation methods, Biometrics, 67, 4, 1532-1542 (2011) · Zbl 1274.62783
[23] Guo, Y.; Tang, L., A hierarchical model for probabilistic independent component analysis of multi-subject fmri studies, Biometrics, 69, 4, 970-981 (2013) · Zbl 1419.62359
[24] Hastie, T.; Tibshirani, R., Independent components analysis through product density estimation, Adv. Neural Inf. Process. Syst., 15, 649-656 (2003)
[25] Himberg, J.; Hyvärinen, A.; Esposito, F., Validating the independent components of neuroimaging time series via clustering and visualization, NeuroImage, 22, 3, 1214-1222 (2004)
[26] Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Netw., 10, 3, 626-634 (1999)
[27] Jin, Z.; Risk, B. B.; Matteson, D. S., Optimization and testing in linear non-Gaussian component analysis, Stat. Anal. Data Min. ASA Data Sci. J. (2017)
[28] Kashyap, R.; Kong, R.; Bhattacharjee, S.; Li, J.; Zhou, J.; Yeo, B. T., Individual-specific fmri-subspaces improve functional connectivity prediction of behavior, NeuroImage, 189, 804-812 (2019)
[29] Li, Y.-O.; Adalı, T.; Calhoun, V. D., Estimating the number of independent components for functional magnetic resonance imaging data, Hum. Brain Mapp., 28, 11, 1251-1266 (2007)
[30] Lock, E. F.; Hoadley, K. A.; Marron, J. S.; Nobel, A. B., Joint and individual variation explained (jive) for integrated analysis of multiple data types, Ann. Appl. Stat., 7, 1, 523 (2013) · Zbl 1454.62355
[31] Mejia, A. F.; Nebel, M. B.; Wang, Y.; Caffo, B. S.; Guo, Y., Template independent component analysis: targeted and reliable estimation of subject-level brain networks using big data population priors (2019), arXiv preprint
[32] Minka, T. P., Automatic choice of dimensionality for pca, (Advances in Neural Information Processing Systems (2001)), 598-604
[33] Nordhausen, K.; Oja, H.; Tyler, D. E.; Virta, J., Asymptotic and bootstrap tests for the dimension of the non-Gaussian subspace, IEEE Signal Process. Lett., 24, 6, 887-891 (2017)
[34] Nordhausen, K.; Oja, H.; Tyler, D. E.; Virta, J., Ictest: estimating and testing the number of interesting components in linear dimension reduction (2017), URL:
[35] Padmanabhan, A.; Lynch, C. J.; Schaer, M.; Menon, V., The default mode network in autism, Biological Psychiatry: Cogn. Neurosci. Neuroimaging, 2, 6, 476-486 (2017)
[36] Plis, S. M.; Hjelm, D. R.; Salakhutdinov, R.; Allen, E. A.; Bockholt, H. J.; Long, J. D.; Johnson, H. J.; Paulsen, J. S.; Turner, J. A.; Calhoun, V. D., Deep learning for neuroimaging: a validation study, Front. Neurosci., 8, 229 (2014)
[37] Risk, B.; Gaynanova, I., Simultaneous non-Gaussian component analysis (SING) for data integration in neuroimaging, Ann. Appl. Stat., 15, 3, 1431-1454 (2021) · Zbl 1478.62341
[38] Risk, B. B.; Matteson, D. S.; Ruppert, D., Linear non-Gaussian component analysis via maximum likelihood, J. Am. Stat. Assoc., 114, 525, 332-343 (2019) · Zbl 1478.62155
[39] Risk, B. B.; Matteson, D. S.; Ruppert, D.; Eloyan, A.; Caffo, B. S., An evaluation of independent component analyses with an application to resting-state fmri, Biometrics, 70, 1, 224-236 (2014) · Zbl 1419.62430
[40] Tang, M., Ting, C.-M., Ombao, H., 2021. BICNet: A Bayesian approach for estimating task effects on intrinsic connectivity networks in fMRI data. arXiv.
[41] Ting, C. M.; Samdin, S. B.; Tang, M.; Ombao, H., Detecting dynamic community structure in functional brain networks across individuals: a multilayer approach, IEEE Trans. Med. Imaging, 40, 2, 468-480 (2021)
[42] Ting, C.-M.; Skipper, J. I.; Noman, F.; Small, S. L.; Ombao, H., Separating stimulus-induced and background components of dynamic functional connectivity in naturalistic fMRI, IEEE Trans. Med. Imaging (2021)
[43] Welvaert, M.; Durnez, J.; Moerkerke, B.; Verdoolaege, G.; Rosseel, Y., neurosim: an r package for generating fmri data, J. Stat. Softw., 44, 10, 1-18 (2011)
[44] Yerys, B. E.; Tunç, B.; Satterthwaite, T. D.; Antezana, L.; Mosner, M. G.; Bertollo, J. R.; Guy, L.; Schultz, R. T.; Herrington, J. D., Functional connectivity of frontoparietal and salience/ventral attention networks have independent associations with co-occurring attention-deficit/hyperactivity disorder symptoms in children with autism, Biological Psychiatry: Cogn. Neurosci. Neuroimaging, 4, 4, 343-351 (2019)
[45] Zhou, G.; Cichocki, A.; Zhang, Y.; Mandic, D. P., Group component analysis for multiblock data: common and individual feature extraction, IEEE Trans. Neural Netw. Learn. Syst., 27, 11, 2426-2439 (2015)
[46] Zhu, M.; Ghodsi, A., Automatic dimensionality selection from the scree plot via the use of profile likelihood, Comput. Stat. Data Anal., 51, 2, 918-930 (2006) · Zbl 1157.62429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.