×

Contact instantons with Legendrian boundary condition: a priori estimates, asymptotic convergence and index formula. (English) Zbl 1543.53081

Summary: In this paper, we establish nonlinear ellipticity of the equation of contact instantons with Legendrian boundary condition on punctured Riemann surfaces by proving the a priori elliptic coercive estimates for the contact instantons with Legendrian boundary condition, and prove an asymptotic exponential \(C^\infty\)-convergence result at a puncture under the uniform \(C^1\) bound. We prove that the asymptotic charge of contact instantons at the punctures under the Legendrian boundary condition vanishes. This eliminates the phenomenon of the appearance of spiraling cusp instanton along a Reeb core, which removes the only remaining obstacle towards the compactification and the Fredholm theory of the moduli space of contact instantons in the open string case, which plagues the closed string case. Leaving the study of \(C^1\)-estimates and details of Gromov-Floer-Hofer style compactification of contact instantons to [the first author, “Geometry and analysis of contact instantons and entanglement of Legendrian links I”, Preprint, arXiv:2111.02597], we also derive an index formula which computes the virtual dimension of the moduli space. These results are the analytic basis for the sequels [the first author, loc. cit.; “Contact instantons, anti-contact involution and proof of Shelukhin’s conjecture”, Preprint, arXiv:2212.03557; “Gluing theories of contact instantons and of pseudoholomorphic curves in SFT”, Preprint, arXiv:2205.00370] and [the authors, Int. J. Math. 35, No. 7, Article ID 2450019, 60 p. (2024; Zbl 07863346)] containing applications to contact topology and contact Hamiltonian dynamics.

MSC:

53D42 Symplectic field theory; contact homology
53D35 Global theory of symplectic and contact manifolds
58J32 Boundary value problems on manifolds
32Q65 Pseudoholomorphic curves

References:

[1] Atiyah, M. F. and Bott, R., The index problem for manifolds with boundary (Oxford Univ. Press, London, 1964), pp. 175-186. · Zbl 0163.34603
[2] Arnol’d, V. I., On a characteristic class entering the quantizations, Funct. Anal. Appl.1 (1967) 1-14. · Zbl 0175.20303
[3] P. Biran, O. Cornea and Z. Zhang, Triangulation, persistence and Fukaya categories (2023), arXiv:2304.01785.
[4] F. Bourgeois, A Morse-Bott approach to contact homology, Ph.D. dissertation, Stanford University (2002).
[5] D. Cant, A dimension formula for relative symplectic field theory, dissertation, Stanford University (2022).
[6] S. S. Chern, Complex Manifolds Without Potential Theory, Van Nostrand Mathematical Studies. · Zbl 0158.33002
[7] Ekholm, T., Etnyre, J. and Sullivan, M., The contact homology of Legendrian submanifolds in \(\mathbb{R}^{2 n + 1} \), J. Differential Geom.71(2) (2005) 177-305. · Zbl 1103.53048
[8] Ekholm, T., Etnyre, J. and Sullivan, M., Legendrian contact homology in \(P\times\mathbb{R} \), Trans. Amer. Math. Soc.359(7) (2007) 3301-3335. · Zbl 1119.53051
[9] Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I., , 46.1 & 46.2., (American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009). · Zbl 1181.53003
[10] Fukaya, K., Oh, Y.-G., Ohta, H. and Ono, K., Anchored Lagrangian submanifolds and their Floer theory, Mirror Symmetry and Tropical Geometry, , Vol. 527 (American Mathematical Society, Providence, RI, 2010), pp. 15-54. · Zbl 1219.53079
[11] Freed, D. and Uhlenbeck, K., Instantons and Four-Manifolds, , Vol. 1 (Srpringer-Verlag, New York, 1984). · Zbl 0559.57001
[12] Hofer, H., Wysocki, K. and Zehnder, E., Correction to: “Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics”, Ann. Inst. H. Poincar C Anal. Non Linéaire15(4) (1996) 535-538.
[13] Hofer, H., Wysocki, K. and Zehnder, E., Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics., Ann. Inst. H. Poincaré C Anal. Non Linéaire13(3) (1996) 337-379. · Zbl 0861.58018
[14] Jost, J., On the regularity of minimal surfaces with free boundaries in Riemannian manifolds, Manuscripta Math.56(3) (1986) 279-291. · Zbl 0601.49028
[15] Katz, S. and Liu, C. C., Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys.5 (2001) 1-49. · Zbl 1026.32028
[16] Klein, F., Über realitältnisse bei der einem beliebigen geschlechte zugehörigen Normalkurve der \(\phi \), Math. Ann.42 (1892).
[17] T. Kim and Y.-G. Oh, Perturbation theory of asymptotic operators of contact instantons and pseudoholomorphic curves on symplectization, preprint (2023), arXiv:2303.01011.
[18] Lockhart, R. and McOwen, R., Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)12(3) (1985) 409-447. · Zbl 0615.58048
[19] Y.-G. Oh, Bordered contact instantons and their fredholm theory and generic transversalities, to appear in the Proceedgings of Bumsig Kim’s Memorial Conference, October 2021, KIAS, arXiv:2209.03548(v2).
[20] Y.-G. Oh, Geometry and analysis of contact instantons and entangement of Legendrian links II, in preparation.
[21] Oh, Y.-G., Riemann-Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J.35(1) (1995) 39-75. · Zbl 0853.32017
[22] Oh, Y.-G., Symplectic topology as the geometry of action functional I: Relative Floer theory on the cotangent bundle, J. Differ. Geom.46(3) (1997) 499-577. · Zbl 0926.53031
[23] Oh, Y.-G., Symplectic topology as the geometry of action functional II: Pants product and cohomological invariants, Comm. Anal. Geom.7(1) (1999) 1-54. · Zbl 0966.53055
[24] Oh, Y.-G., Symplectic Topology and Floer Homology, Vol. 1, , 28 (Cambridge University Press, Cambridge, 2015). · Zbl 1344.53002
[25] Oh, Y.-G., Symplectic Topology and Floer Homology, Vol. 2, , 29 (Cambridge University Press, Cambridge, 2015). · Zbl 1344.53002
[26] Y.-G. Oh, Geometric analysis of perturbed contact instantons with Legendrian boundary conditions (2021), arXiv:2205.12351.
[27] Y.-G. Oh, Geometry and analysis of contact instantons and entangement of Legendrian links I, preprint (2021), arXiv:2111.02597.
[28] Y.-G. Oh, Contact instantons, anti-contact involution and proof of Shelukhin’s conjecture, preprint (2022), arXiv:2212.03557.
[29] Y.-G. Oh, Gluing theories of contact instantons and of pseudoholomorphic curves in SFT, preprint (2022), arXiv:2205.00370.
[30] Oh, Y.-G., Analysis of contact Cauchy-Riemann maps III: Energy, bubbling and Fredholm theory, Bulletin of Math. Sci.13(1) (2023) Paper No. 2250011, 61 pp. · Zbl 1518.53066
[31] Oh, Y.-G. and Kim, T., Analysis of pseudoholomorphic curves on symplectization: Revisit via contact instantons, The Proceedings for the IBS-CGP and MATRIX Workshop on Symplectic Topology, , Vol. 5 (2022).
[32] Oh, Y.-G. and Savelyev, Y., Pseudoholomoprhic curves on the \(\mathfrak{L}ℭ\mathfrak{S} \)-fication of contact manifolds, Adv. Geom. (2) (2023) 153-190. · Zbl 1520.53065
[33] Oh, Y.-G. and Wang, R., Canonical connection on contact manifolds, Real and Complex Submanifolds, , Vol. 106 (2014), (arXiv:1212.4817in its full version), pp. 43-63.
[34] Oh, Y.-G. and Wang, R., Analysis of contact Cauchy-Riemann maps I: A priori \(C^k\) estimates and asymptotic convergence, Osaka J. Math.55(4) (2018) 647-679. · Zbl 1454.53074
[35] Oh, Y.-G. and Wang, R., Analysis of contact Cauchy-Riemann maps II: Canonical neighborhoods and exponential convergence for the Morse-Bott case, Nagoya Math. J.231 (2018) 128-223. · Zbl 1410.53080
[36] Y.-G. Oh and S. Yu, Legendrian spectral invariants on the one jet bundle via perturbed contact instantons, preprint (2023), arXiv:2301.06704.
[37] Schoen, R., Analytic aspects of the harmonic map problem, Math. Sci. Res. Inst. Publ., 2, ed. Chern, S. S. (Springer, New York), pp. 321-358. · Zbl 0551.58011
[38] Seppälä, M., Moduli spaces of stable real algebraic curves, Ann. Sci. École Norm. Sup. (4)24(5) (1991) 519-544. · Zbl 0757.32011
[39] Sikorav, J. C., Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry, Chapter V, eds., Audin, M. and Lafontaine, J. (Birkhäuser, Basel).
[40] Salamon, D. and Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45(10) (1992) 1303-1360. · Zbl 0766.58023
[41] Wells, R. O., Differential Analysis on Complex Manifolds, , Vol. 65 (Springer, New York, 1973). · Zbl 0262.32005
[42] C. Wendl, Lectures on Symplectic Field Theory, a book manuscript, arXiv:1612.01009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.