×

Analysis of contact Cauchy-Riemann maps. II: Canonical neighborhoods and exponential convergence for the Morse-Bott case. (English) Zbl 1410.53080

Summary: This is a sequel to our papers [in: Real and complex submanifolds. Proceedings of the ICM 2014 satellite conference and of the 18th international workshop on differential geometry, Daejeon, Korea, August 10–12, 2014. Tokyo: Springer. 43–63 (2014; Zbl 1323.53086); J. Math. 55, No. 4, 647–679 (2018; Zbl 1454.53074)]. In [loc. cit., 2014], we introduced a canonical affine connection on \(M\) associated to the contact triad \((M,\lambda,J)\). In [loc. cit., 2018], we used the connection to establish a priori \(W^{k,p}\)-coercive estimates for maps \(w:\dot{\Sigma}\rightarrow M\) satisfying \(\overline{\partial^{\pi}} w=0\), \(d(w^\ast\lambda\circ j)=0\) without involving symplectization. We call such a pair \((w,j)\) a contact instanton. In this paper, we first prove a canonical neighborhood theorem of the locus \(Q\) foliated by closed Reeb orbits of a Morse-Bott contact form. Then using a general framework of the three-interval method, we establish exponential decay estimates for contact instantons \((w,j)\) of the triad \((M,\lambda,J)\), with \(\lambda\) a Morse-Bott contact form and \(J\) a CR-almost complex structure adapted to \(Q\), under the condition that the asymptotic charge of \((w,j)\) at the associated puncture vanishes.
We also apply the three-interval method to the symplectization case and provide an alternative approach via tensorial calculations to exponential decay estimates in the Morse-Bott case for the pseudoholomorphic curves on the symplectization of contact manifolds. This was previously established by F. Bourgeois [A Morse-Bott approach to contact homology. Stanford: Stanford University (PhD Thesis) (2002)] (resp. by E. Bao [Pac. J. Math. 278, No. 2, 291–324 (2015; Zbl 1327.53110)]), by using special coordinates, for the cylindrical (resp. for the asymptotically cylindrical) ends. The exponential decay result for the Morse-Bott case is an essential ingredient in the setup of the moduli space of pseudoholomorphic curves which plays a central role in contact homology and symplectic field theory (SFT).

MSC:

53D10 Contact manifolds (general theory)
32V05 CR structures, CR operators, and generalizations

References:

[1] V. I.Arnold, Mathematical Methods of Classical Mechanics, 2nd edn, Graduate Text in Mathematics 60, Springer, New York, 1989.10.1007/978-1-4757-2063-1 · Zbl 0647.70001 · doi:10.1007/978-1-4757-2063-1
[2] E.Bao, On J-holomorphic curves in almost complex manifolds with asymptotically cylindrical ends, Pacific J. Math.278(2) (2015), 291-324.10.2140/pjm.2015.278.291 · Zbl 1327.53110 · doi:10.2140/pjm.2015.278.291
[3] R.Bott, Nondegenerate critical manifolds, Ann. of Math. (2)60 (1954), 248-261.10.2307/1969631 · Zbl 0058.09101 · doi:10.2307/1969631
[4] R.Bott and L.Tu, Differential Forms in Algebraic Topology, Springer, New York, 1982.10.1007/978-1-4757-3951-0 · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[5] F.Bourgeois, A Morse-Bott approach to contact homology, Ph.D. dissertation, Stanford University, 2002. · Zbl 1046.57017
[6] F.Bourgeois, Y.Eliashberg, H.Hofer, K.Wysocki and E.Zehnder, Compactness results in symplectic field theory, Geom. Topol.7 (2003), 799-888.10.2140/gt.2003.7.799 · Zbl 1131.53312 · doi:10.2140/gt.2003.7.799
[7] Y.Eliashberg, A.Givental and H.Hofer, “Introduction to symplectic field theory”, in Visions in Mathematics, Birkhäuser, Basel, 2000, 560-673.10.1007/978-3-0346-0425-3_4 · Zbl 0989.81114 · doi:10.1007/978-3-0346-0425-3_4
[8] M.Gotay, On coisotropic imbeddings of pre-symplectic manifolds, Proc. Amer. Math. Soc.84 (1982), 111-114.10.1090/S0002-9939-1982-0633290-X · Zbl 0476.53020 · doi:10.1090/S0002-9939-1982-0633290-X
[9] S.Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics 80, Academic Press, New York, London, 1978. · Zbl 0451.53038
[10] H.Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math.114(1) (1993), 515-563.10.1007/BF01232679 · Zbl 0797.58023 · doi:10.1007/BF01232679
[11] H.Hofer, K.Wysocki and E.Zehnder, “Properties of pseudoholomorphic curves in symplectization IV: asymptotics with degeneraies”, in Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst., 8, Cambridge University Press, Cambridge, 1996, 78-117. · Zbl 0868.53043
[12] H.Hofer, K.Wysocki and E.Zehnder, Properties of pseudoholomorphic curves in symplectizations, I: asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996), 337-379.10.1016/S0294-1449(16)30108-1 · Zbl 0861.58018 · doi:10.1016/S0294-1449(16)30108-1
[13] H.Hofer, K.Wysocki and E.Zehnder, Correction to “Properties of pseudoholomorphic curves in symplectizations, I: asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 535-538.10.1016/S0294-1449(98)80034-6 · doi:10.1016/S0294-1449(98)80034-6
[14] H.Hofer, K.Wysocki and E.Zehnder, The asymptotic behavior of a finite energy plane. ETHZ, Institute for Mathematical Research (2001).
[15] H.Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math.30 (1977), 509-541.10.1002/cpa.3160300502 · Zbl 0354.57005 · doi:10.1002/cpa.3160300502
[16] I.Mundet i Riera and G.Tian, A compactification of the moduli space of twisted holomorphic maps, Adv. Math.222 (2009), 1117-1196.10.1016/j.aim.2009.05.019 · Zbl 1177.32007 · doi:10.1016/j.aim.2009.05.019
[17] Y.-G.Oh, Symplectic Topology and Floer Homology I, New Mathematical Monographs 28, Cambridge University Press, Cambridge, 2016.
[18] Y.-G.Oh, Analysis of contact Cauchy-Riemann maps III; energy, bubbling and Fredholm theory, preprint, 2013, available from http://cgp.ibs.re.kr/yongoh/preprints.html.
[19] Y.-G.Oh and J.-S.Park, Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math.161 (2005), 287-360.10.1007/s00222-004-0426-8 · Zbl 1081.53066 · doi:10.1007/s00222-004-0426-8
[20] Y.-G.Oh and R.Wang, “Canonical connection on contact manifolds”, in Real and Complex Submanifolds, Springer Proceedings in Math. & Statistics 106, pp. 43-63, eds. by Y.-J. Suh and et al. for ICM-2014 satellite conference, Daejeon, Korea, August 2014; arXiv:1212.4817. · Zbl 1323.53086
[21] Y.-G.Oh and R.Wang, Analysis of contact Cauchy-Riemann maps I: a priori<![CDATA \([C^k]]\)>estimates and asymptotic convergence, submitted, preprint, 2012, arXiv:1212.5186v3.
[22] Y.-G.Oh and K.Zhu, Thick-thin decomposition of Floer trajectories and adiabatic gluing, preprint, 2011, arXiv:1103.3525.
[23] J.Robbin and D.Salamon, Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire18(5) (2001), 573-612; Elsevier Masson.10.1016/S0294-1449(00)00066-4 · Zbl 0999.53048 · doi:10.1016/S0294-1449(00)00066-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.