×

Some computational convergent iterative algorithms to solve nonlinear problems. (English) Zbl 07695267

Summary: In this article, we apply Fourier transform to convert a nonlinear problem to a suitable equation and then we introduce a modified homotopy perturbation to divide the above equation into some smaller and easier equations. These equations can be solved by some iterative algorithms which are constructed by modified homotopy perturbation and Adomian polynomials. As an example, we use the iterative algorithms to find the exact solution of nonlinear ordinary and partial differential equations (in abbreviated form, ODE and PDE). To show ability and validity of the presented algorithms, we solve Korteweg-de Vries (KdV) equation to approximate the exact solution with a high accuracy. Furthermore, a discussion is presented herein about the convergence of the proposed algorithms in Banach space

MSC:

65-XX Numerical analysis
Full Text: DOI

References:

[1] Abdou, MA, Solitary solutions of nonlinear differential difference equations via Adomain decomposition method, Int. J. Nonlinear Sci., 12, 11, 29-35 (2011) · Zbl 1236.35196
[2] Acan, O.; Keskin, Y., A comparative study of numerical methods for solving (n+1) dimensional and third-order partial differential equations, J. Comput. Theor. Nanosci., 13, 11, 8800-8807 (2016) · doi:10.1166/jctn.2016.6044
[3] Acan, O.; Keskin, Y., A new technique of Laplace Padé reduced differential transform method for (1+3) dimensional wave equations, New Trends Math. Sci., 1, 164-171 (2017) · doi:10.20852/ntmsci.2017.134
[4] Adomian, G., Solving Frontier Problem of Physics: The Decomposition Method (1994), Dordrecht: Kluwer Academic Press, Dordrecht · Zbl 0802.65122 · doi:10.1007/978-94-015-8289-6
[5] Babolian, E.; Saeidian, J.; Paripour, M., Computing the fourier transform via homotopy perturbation method, A J. Phys. Sci., 64, 671-675 (2009)
[6] Bildik, N.; Bayramoglu, H., The solution of two dimensional nonlinear differential equations by the Adomian decomposition method, Appl. Math. Comput., 163, 519-524 (2005) · Zbl 1067.65106
[7] Boggess, A.; Narcowich, FJ, A First Course in Wavelet with Fourier Analysis (2000), Dordrecht: Kluwer Academic Press, Dordrecht
[8] Bona, JL; Pritchard, WG; Scott, LR, An evaluation of a model equation for water waves, Philos. Trans. R. Soc. Lond. Ser. A., 302, 457-510 (1981) · Zbl 0497.76023 · doi:10.1098/rsta.1981.0178
[9] Bona, JL; Sun, SM; Zhang, BY, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Am. Math. Soc., 354, 479-490 (2001) · Zbl 0988.35141 · doi:10.1090/S0002-9947-01-02885-9
[10] Bracewell, RN, The Fourier Transform and Its Applications (2000), Boston: McGraw-Hill Book Campany, Boston
[11] Elzaki, TM, Solution of nonlinear differential equations using mixture of Elzaki transform and differential transform method, Int. Math. Forum, 7, 13, 631-638 (2012) · Zbl 1251.34004
[12] Elzaki, TM; Hilal, EMA, Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations, Math. Theory Model., 2, 3, 33-42 (2012)
[13] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A., 277, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[14] Glayeri, A.; Rabbani, M., New technique in semi-analytic method for solving non-linear differential equations, Math. Sci., 5, 4, 395-404 (2011)
[15] Guo, BY; Shen, J., On spectral approximations using modified legendre rational functions application to the Korteweg-de Vries equation on the half line, Indiana Univ. Math. J., 50, 181-204 (2001) · Zbl 0992.65111 · doi:10.1512/iumj.2001.50.2090
[16] Hazarika, B.; Srivastava, HM; Arab, R.; Rabbani, M., Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl. Math. Comput., 360, 131-146 (2019) · Zbl 1428.45003
[17] He, JH, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[18] He, JH, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals, 26, 695-700 (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[19] He, JH; El-Dib, YO, Homotopy perturbation method for Fangzhu oscillator, J. Math. Chem. (2020) · Zbl 1470.34050 · doi:10.1007/s10910-020-01167-6
[20] He, C-H; Liu, C.; He, JH; Shirazi, AH; Mohammad-Sedighi, H., Passive atmospheric water harvesting utilizing an ancient Chinese ink slab, Facta Univ. Ser. Mech. Eng. (2020) · doi:10.22190/FUME201203001H
[21] He, JH; El-Dib, YO, The reducing rank method to solve third-order Duffing equation with the homotopy perturbation, Numer. Methods Partial Differ. Equ. (2020) · Zbl 07776044 · doi:10.1002/num.22609
[22] He, JH; Hou, W-F; Qie, N.; Gepreel, KA; Shirazi, AH; Mohammad-Sedighi, H., Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators, Facta Univ. Ser. Mech. Eng. (2021) · doi:10.22190/FUME201205002H
[23] Kanth, ASVR; Aruna, K., Differential transform method for solving the linear and nonlinear Klein-Gordon equation, Comput. Phys. Commun., 180, 708-711 (2009) · Zbl 1198.81038 · doi:10.1016/j.cpc.2008.11.012
[24] Nourazar, SS; Mohammadzadeh, A.; Nourazar, M., On the simulation of partial differential equations using the hybrid of fourier transform and homotopy perturbation method, AUT J. Model. Simul., 46, 45-55 (2014)
[25] Rabbani, M., New homotopy perturbation method to solve non-linear problems, J. Math. Comput. Sci., 7, 272-275 (2013) · doi:10.22436/jmcs.07.04.06
[26] Rabbani, M., Modified homotopy method to solve non-linear integral equations, Int. J. Nonlinear Anal. Appl., 6, 2, 133-136 (2015) · Zbl 1326.45003
[27] Rabbani, M.; Arab, R., Extension of some theorems to find solution of nonlinear integral equation and homotopy perturbation method to solve it, Math. Sci., 11, 2, 87-94 (2017) · Zbl 1453.65462 · doi:10.1007/s40096-017-0206-4
[28] Rabbani, M.; Gelayeri, A., Computation Adomian method for solving non-linear differential equation in the fluid dynamic, Int. J. Mechatron. Electr. Comput. Technol., 5, 14, 2039-2043 (2015)
[29] Rabbani, M.; Zarali, B., Solution of Fredholm integro-differential equations system by modified decomposition method, J. Math. Comput. Sci., 5, 4, 258-264 (2012) · doi:10.22436/jmcs.05.04.02
[30] Rawashdeh, MS; Maitama, S., Solving nonlinear ordinary differential equations using the NDM, J. Appl. Anal. Comput., 5, 77-88 (2015) · Zbl 1330.35433
[31] Singh, P.; Sharma, D., Convergence and error analysis of series solution of nonlinear partial differential equation, Nonlinear Eng., 7, 4, 303-308 (2018) · doi:10.1515/nleng-2017-0113
[32] Spiegel, MR, Schaum’s Outline Series of Fourier Analysis with Application to Boundary Value Problems (1974), New York: McGraw-Hill Education, New York
[33] Wazwaz, AM, The tanh method for traveling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 3, 713-723 (2004) · Zbl 1054.65106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.