×

Dynamical behaviors of a network-based SIR epidemic model with saturated incidence and pulse vaccination. (English) Zbl 1542.92157

Summary: Pulse vaccination is an effective strategy to restrain the spread of infectious diseases. This paper proposes a network-based SIR epidemic model incorporating a saturated force of infection and vertical transmission along with pulse vaccination strategy and continuous treatment plan. Dynamical behaviors of the model are analyzed in virtue of the theory for impulsive differential equations. We give the boundedness of solutions and derive the expression of basic reproduction number \(R_0\). By the Floquet theorem and comparison principle, we show that the disease-free periodic solution is globally asymptotically stable when \(R_0<1\). Moreover, a sufficient condition for the uniform permanence of the system is also obtained. Finally, numerical analyses are given to substantiate the theoretical results and a case for rubella is studied.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
92C42 Systems biology, networks
34A37 Ordinary differential equations with impulses
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Metcalf, C. J.E.; Lessler, J., Opportunities and challenges in modeling emerging infectious diseases, Science, 357, 6347, 149-152, 2017
[2] Vivekanandhan, G.; Zavareh, M. N.; Natiq, H., Investigation of vaccination game approach in spreading covid-19 epidemic model with considering the birth and death rates, Chaos Solitons Fractals, 163, Article 112565 pp., 2022
[3] Turkyilmazoglu, M., Explicit formulae for the peak time of an epidemic from the SIR model, Physica D, 422, Article 132902 pp., 2021 · Zbl 1485.92161
[4] Turkyilmazoglu, M., A highly accurate peak time formula of epidemic outbreak from the SIR model, Chin J Phys, 84, 39-50, 2023 · Zbl 1539.92170
[5] Capasso, V., Mathematical structure of epidemic models, 1993, Springer: Springer New York · Zbl 0798.92024
[6] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc R Soc A, 138, 834, 55-83, 1932 · JFM 59.1190.03
[7] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc R Soc A, 115, 772, 700-721, 1927 · JFM 53.0517.01
[8] Peng, X. L.; Xu, X. J.; Fu, X. C., Vaccination intervention on epidemic dynamics in networks, Phys Rev E, 87, 2, Article 022813 pp., 2013
[9] Schlickeiser, R.; Kroger, M., Analytical modeling of the temporal evolution of epidemics outbreaks accounting for vaccinations, Physics, 3, 2, 386-426, 2021
[10] Turkyilmazoglu, M., An extended epidemic model with vaccination: weak-immune SIRVI, Physica A, 598, Article 127429 pp., 2022 · Zbl 07529624
[11] Huang, S. Y.; Chen, F. D.; Chen, L. J., Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination, Commun Nonlinear Sci Numer Simul, 43, 296-310, 2017 · Zbl 1465.92058
[12] Li, C. L.; Li, C. H., Dynamics of an epidemic model with imperfect vaccinations on complex networks, J Phys A, 53, 46, Article 464001 pp., 2020 · Zbl 1519.92273
[13] Lv, W.; Ke, Q.; Li, K. Z., Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks, Nonlinear Dynam, 99, 2, 1507-1523, 2020 · Zbl 1459.92136
[14] Buonomo, B.; Della Marca, R., Oscillations and hysteresis in an epidemic model with information-dependent imperfect vaccination, Math Comput Simulation, 162, 97-114, 2019 · Zbl 1540.92180
[15] Meng, X. Y.; Cai, Z. Q.; Si, S. B., Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game, Appl Math Comput, 403, Article 126172 pp., 2021 · Zbl 1510.92223
[16] Tome, T.; de Oliveira, M. J., Effect of immunization through vaccination on the SIS epidemic spreading model, J Phys A, 55, 27, Article 275602 pp., 2022 · Zbl 1507.92121
[17] Li, C. L.; Cheng, C. Y.; Li, C. H., Global dynamics of two-strain epidemic model with single-strain vaccination in complex networks, Nonlinear Anal Real World Appl, 69, Article 103738 pp., 2023 · Zbl 1504.92080
[18] de Carvalho, J. P.S. M.; Rodrigues, A. A., SIR model with vaccination: bifurcation analysis, Qual Theory Dyn Syst, 22, 3, 105, 2023 · Zbl 1530.37109
[19] Agur, Z.; Cojocaru, L.; Mazor, G., Pulse mass measles vaccination across age cohorts, Proc Natl Acad Sci USA, 90, 24, 11698-11702, 1993
[20] Sabin. Measles, A. B., Killer of millions in developing countries: Strategy for rapid elimination and continuing control, Eur J Epidemiol, 7, 1, 1-22, 1991
[21] Ramsay, M.; Gay, N.; Miller, E., The epidemiology of measles in england and wales: rationale for the 1994 national vaccination campaign, Commun. Dis. Rep., 4, 12, 141-146, 1994
[22] d’Onofrio, A., On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl Math Lett, 18, 7, 729-732, 2005 · Zbl 1064.92041
[23] Piotrowska, M. J.; Puchalska, A.; Sakowski, K., On the network suppression of the pathogen spread within the healthcare system, Appl Math Comput, 457, Article 128169 pp., 2023 · Zbl 07736200
[24] Liu, S. Y.; Pei, Y. Z.; Li, C. G., Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl Math Model, 33, 4, 1923-1932, 2009 · Zbl 1205.34007
[25] Li, Q.; Bai, Y.; Tang, B., Modelling the pulse population-wide nucleic acid screening in mitigating and stopping COVID-19 outbreaks in China, BMC Infect Dis, 23, 1, 280, 2023
[26] Wang, X.; Tao, Y. D.; Song, X. Y., Pulse vaccination on SEIR epidemic model with nonlinear incidence rate, Appl Math Comput, 210, 2, 398-404, 2009 · Zbl 1162.92323
[27] Li, Q.; Xiao, Y. N., Analysis of a hybrid SIR model combining the fixed-moments pulse interventions with susceptibles-triggered threshold policy, Appl Math Comput, 453, Article 128082 pp., 2023 · Zbl 07702366
[28] Nie, L. F.; Shen, J. Y.; Yang, C. X., Dynamic behavior analysis of SIVS epidemic models with state-dependent pulse vaccination, Nonlinear Anal Hybrid Syst, 27, 258-270, 2018 · Zbl 1382.92246
[29] Bohner, M.; Stamov, G.; Stamova, I., On h-manifolds stability for impulsive delayed SIR epidemic models, Appl Math Model, 118, 853-8622, 2023 · Zbl 1510.92201
[30] Sisodiya, O. S.; Misra, O. P.; Dhar, J., Dynamics of cholera epidemics with impulsive vaccination and disinfection, Math Biosci, 298, 46-57, 2018 · Zbl 1392.92110
[31] Yang, J. T.; Yang, Z. C.; Chen, Y. M., An SIS epidemic model in a patchy environment with pulse vaccination and quarantine, Commun Nonlinear Sci Numer Simul, 118, Article 107053 pp., 2023 · Zbl 1507.92063
[32] Wang, X.; Tao, Y. D.; Song, X. Y., Analysis of pest-epidemic model by releasing diseased pest with impulsive transmission, Nonlinear Dynam, 65, 1-2, 175-185, 2011 · Zbl 1234.92059
[33] Xie, Y. X.; Wang, L. J.; Deng, Q. C., The dynamics of an impulsive predator-prey model with communicable disease in the prey species only, Appl Math Comput, 292, 320-335, 2017 · Zbl 1410.92142
[34] He, Z. B.; Cai, Z. P.; Yu, J. G., Cost-efficient strategies for restraining rumor spreading in mobile social networks, IEEE Trans Veh Technol, 66, 3, 2789-2800, 2017
[35] Ding, L.; Hu, P.; Guan, Z. H., An efficient hybrid control strategy for restraining rumor spreading, IEEE Trans Syst Man Cybern Syst, 51, 11, 6779-6791, 2021
[36] Peng, D. X.; Li, X. D., Leader-following synchronization of complex dynamic networks via event-triggered impulsive control, Neurocomputing, 412, 1-10, 2020
[37] Li, Y. Y.; Lu, J. Q.; Alofi, A. S., Impulsive cluster synchronization for complex dynamical networks with packet loss and parameters mismatch, Appl Math Model, 112, 215-223, 2022 · Zbl 1505.93189
[38] Zino, L.; Cao, M., Analysis, prediction, and control of epidemics: a survey from scalar to dynamic network models, IEEE Circuits Syst Mag, 21, 4, 4-23, 2021
[39] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys Rev Lett, 86, 14, 3200-3203, 2001
[40] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys Rev E, 63, 6, Article 066117 pp., 2001
[41] Chen, L. J.; Sun, J. T., Global stability and optimal control of an SIRS epidemic model on heterogeneous networks, Physica A, 410, 196-204, 2014 · Zbl 1395.92145
[42] Huang, S. Y.; Jiang, J. F., Epidemic dynamics on complex networks with general infection rate and immune strategies, Discrete Contin Dyn Syst Ser B, 23, 6, 2071-2090, 2018 · Zbl 1404.92189
[43] Zhu, L. H.; Guan, G.; Li, Y. M., Nonlinear dynamical analysis and control strategies of a network-based SIS epidemic model with time delay, Appl Math Model, 70, 512-531, 2019 · Zbl 1464.92255
[44] Cheng, X. X.; Wang, Y.; Huang, G., Dynamics of a competing two-strain SIS epidemic model with general infection force on complex networks, Nonlinear Anal Real World Appl, 59, Article 103247 pp., 2021 · Zbl 1466.92175
[45] Guan, G.; Guo, Z. Y., Stability behavior of a two-susceptibility SHIR epidemic model with time delay in complex networks, Nonlinear Dynam, 106, 1, 1083-1110, 2021
[46] Jing, X. J.; Liu, G. R.; Jin, Z., Stochastic dynamics of an SIS epidemic on networks, J Math Biol, 84, 6, 50, 2022 · Zbl 1491.92113
[47] Li, Q.; Chen, H. K.; Li, Y. H., Network spreading among areas: A dynamical complex network modeling approach, Chaos, 32, 10, Article 103102 pp., 2022
[48] Wang, H.; Zhang, H. F.; Zhu, P. C., Interplay of simplicial awareness contagion and epidemic spreading on time-varying multiplex networks, Chaos, 32, 8, Article 083110 pp., 2022 · Zbl 07876552
[49] Guan, G.; Guo, Z. Y., Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl Math Model, 101, 55-75, 2022 · Zbl 1481.92139
[50] Nowzari, C.; Preciado, V. M.; Pappas, G. J., Analysis and control of epidemics: A survey of spreading process on complex networks, IEEE Control Syst Mag, 36, 1, 26-46, 2016 · Zbl 1476.92046
[51] Cooke, K. L.; Busenberg, S., Vertically transmitted diseases, Nonlinear Phenom Math Sci, 189-197, 1982 · Zbl 0512.92017
[52] Gao, S. J.; Xie, D. H.; Chen, L. S., Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission, Discrete Contin Dyn Syst Ser B, 7, 1, 77-86, 2007 · Zbl 1191.34062
[53] Wu, Q. C.; Small, M.; Liu, H. X., Superinfection behaviors on scale-free networks with competing strains, J Nonlinear Sci, 23, 1, 113-127, 2013 · Zbl 1262.34053
[54] Chen, S. S.; Jiang, H. J.; Li, L., Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks, Chaos Solitons Fractals, 140, Article 110206 pp., 2020 · Zbl 1495.91089
[55] Yu, S. Z.; Yu, Z. Y.; Jiang, H. J., The spread and control of rumors in a multilingual environment, Nonlinear Dynam, 100, 3, 2933-2951, 2020 · Zbl 1516.91052
[56] Kumar, A.; Nilam, Z. Y., Stability of a delayed SIR epidemic model by introducing two explicit treatment classes along with nonlinear incidence rate and holling type treatment, Comput Appl Math, 38, 3, 130, 2019 · Zbl 1438.34294
[57] Yang, Y. P.; Xiao, Y. N., Threshold dynamics for compartmental epidemic models with impulses, Nonlinear Anal Real World Appl, 13, 1, 224-234, 2012 · Zbl 1238.34023
[58] Liu, X. Z.; Stechlinski, P., Transmission dynamics of a switched multi-city model with transport-related infections, Nonlinear Anal Real World Appl, 14, 1, 264-279, 2013 · Zbl 1317.92074
[59] Bainov, D.; Simeonov, P., Impulsive differential equations: Periodic solutions and applications, 1993, Longman: Longman New York · Zbl 0815.34001
[60] Zhang, F.; Zhao, X. Q., A periodic epidemic model in a patchy environment, J Math Anal Appl, 325, 1, 496-516, 2007 · Zbl 1101.92046
[61] Neighbors, M.; Tannehill-Jones, R., Childhood diseases and disorders. Human diseases, 457-479, 2021, Delmar, Cengage Learning: Delmar, Cengage Learning Clifton Park, New York
[62] Tilahun, G. T.; Tolasa, T. M.; Wole, G. A., Modeling the dynamics of rubella disease with vertical transmission, Heliyon, 8, 11, Article e11797 pp., 2022
[63] Lan, G. J.; Song, B. J.; Yuan, S. L., Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise, Chaos Solitons Fractals, 167, Article 113017 pp., 2023
[64] Su, Q. R.; Feng, Z. L.; Hao, L. X., Assessing the burden of congenital rubella syndrome in China and evaluating mitigation strategies: a metapopulation modelling study, Lancet Infect Dis, 21, 7, 1004-1013, 2021
[65] Diagne, M. L.; Rwezaura, H.; Pedro, S. A., Theoretical analysis of a measles model with nonlinear incidence functions, Commun Nonlinear Sci Numer Simul, 117, Article 106911 pp., 2023 · Zbl 1505.92191
[66] Buonomo, B., A simple analysis of vaccination strategies for rubella, Math Biosci Eng, 8, 3, 677-687, 2011 · Zbl 1260.92103
[67] d’Onofrio, A.; Manfredi, P.; Salinelli, E., Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor Popul Biol, 71, 3, 301-317, 2007 · Zbl 1124.92029
[68] Gao, L.; Hethcote, H., Simulations of rubella vaccination strategies in China, Math Biosci, 202, 2, 371-385, 2006 · Zbl 1097.92040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.