×

Dynamics of an epidemic model with imperfect vaccinations on complex networks. (English) Zbl 1519.92273

Summary: Vaccination is commonly used for reducing the spread of infectious diseases; however, we know that not all vaccinations are completely effective. Thus, it is important to study the impacts of vaccine failure on the spreading dynamics of infectious diseases. In this study, we investigate the dynamics of an epidemic model with three types of imperfect vaccinations on complex networks. More specifically, the present model follows a susceptible-infected-susceptible process with a vaccinated compartment that permit leaky, all-or-nothing, and waning vaccines. A threshold value \(\mathcal{R}_v\) is first presented to ensure the disease-free equilibrium is asymptotically stable. Next, we derive a necessary and sufficient criterion that assures the presence of a backward (or subcritical) bifurcation when \(\mathcal{R}_v = 1\). From this criterion, we can observe that the leaky vaccine plays an important role in leading to such a bifurcation, and interestingly, we also find that this condition is independent of the network structure. The disease is also demonstrated to persist whenever \(\mathcal{R}_v > 1\). Numerical simulations are conducted to validate the theoretical results. Our results show that imperfect vaccination can cause a backward bifurcation, which usually has serious consequences for disease control. Thus, appropriate infection control policies need to be further developed.

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] Alexander M E, Bowman C, Moghadas S M, Summers R, Gumel A B and Sahai B M 2004 A vaccination model for transmission dynamics of influenza SIAM J. Appl. Dyn. Syst.3 503-24 · Zbl 1067.92051 · doi:10.1137/030600370
[2] Arino J, Mccluskey C C and van den Driessche P 2003 Global results for an epidemic model with vaccination that exhibits backward bifurcation SIAM J. Appl. Math.64 260-76 · Zbl 1034.92025 · doi:10.1137/s0036139902413829
[3] Brauer F and Castillo-Chavez C 2012 Mathematical Models in Population Biology and Epidemiology 2nd edn (Berlin: Springer) · Zbl 1302.92001 · doi:10.1007/978-1-4614-1686-9
[4] Buonomo B and Lacitignola D 2011 On the backward bifurcation of a vaccination model with nonlinear incidence Nonlinear Anal. Model Control16 30-46 · Zbl 1271.34045 · doi:10.15388/na.16.1.14113
[5] Cai L-M and Li X-Z 2009 Analysis of a SEIV epidemic model with a nonlinear incidence rate Appl. Math. Model.33 2919-26 · Zbl 1205.34049 · doi:10.1016/j.apm.2008.01.005
[6] Cao X and Jin Z 2019 Epidemic threshold and ergodicity of an SIS model in switched networks J. Math. Anal. Appl.479 1182-94 · Zbl 1420.92104 · doi:10.1016/j.jmaa.2019.06.074
[7] Chen S, Small M and Fu X 2020 Global stability of epidemic models with imperfect vaccination and quarantine on scale-free networks IEEE Trans. Netw. Sci. Eng.7 1583-96 accepted for publication · doi:10.1109/TNSE.2019.2942163
[8] Crokidakis N and de Menezes M A 2012 Critical behavior of the SIS epidemic model with time-dependent infection rate J. Stat. Mech. P05012 · doi:10.1088/1742-5468/2012/05/p05012
[9] Elbasha E H, Podder C N and Gumel A B 2011 Analyzing the dynamics of an SIRS vaccination model with waning natural and vaccine-induced immunity Nonlinear Anal. Real World Appl.12 2692-705 · Zbl 1225.37104 · doi:10.1016/j.nonrwa.2011.03.015
[10] Feng X, Teng Z, Teng Z, Wang K and Zhang F 2014 Backward bifurcation and global stability in an epidemic model with treatment and vaccination Discrete Contin. Dyn. Syst. B 19 999-1025 · Zbl 1327.92058 · doi:10.3934/dcdsb.2014.19.999
[11] Garba S M, Gumel A B and Abu Bakar M R 2008 Backward bifurcations in dengue transmission dynamics Math. Biosci.215 11-25 · Zbl 1156.92036 · doi:10.1016/j.mbs.2008.05.002
[12] Halloran M E, Haber M and Longini I M 1992 Interpretation and estimation of vaccine efficacy under heterogeneity Am. J. Epidemiol.136 328-43 · doi:10.1093/oxfordjournals.aje.a116498
[13] Helton J C, Davis F J and Johnson J D 2005 A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling Reliab. Eng. Syst. Safety89 305-30 · doi:10.1016/j.ress.2004.09.006
[14] Huang S, Chen F and Chen L 2017 Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination Commun. Nonlinear Sci. Numer. Simul.43 296-310 · Zbl 1465.92058 · doi:10.1016/j.cnsns.2016.07.014
[15] Juang J and Liang Y-H 2016 The impact of vaccine success and awareness on epidemic dynamics Chaos26 113105 · Zbl 1378.92072 · doi:10.1063/1.4966945
[16] Lagorio C, Dickison M, Vazquez F, Braunstein L A, Macri P A, Migueles M V, Havlin S and Stanley H E 2011 Quarantine-generated phase transition in epidemic spreading Phys. Rev. E 83 026102 · doi:10.1103/physreve.83.026102
[17] Li X-Z, Li W-S and Ghosh M 2009 Stability and bifurcation of an SIR epidemic model with nonlinear incidence and treatment Appl. Math. Comput.210 141-50 · Zbl 1159.92036 · doi:10.1016/j.amc.2008.12.085
[18] Li C-H, Tsai C-C and Yang S-Y 2014 Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks Commun. Nonlinear Sci. Numer. Simul.19 1042-54 · Zbl 1457.92170 · doi:10.1016/j.cnsns.2013.08.033
[19] Li C-H and Yousef A M 2019 Bifurcation analysis of a network-based SIR epidemic model with saturated treatment function Chaos29 033129 · Zbl 1411.92276 · doi:10.1063/1.5079631
[20] Li T, Wang Y and Guan Z-H 2014 Spreading dynamics of a SIQRS epidemic model on scale-free networks Commun. Nonlinear Sci. Numer. Simul.19 686-92 · Zbl 1470.92319 · doi:10.1016/j.cnsns.2013.07.010
[21] Lv W, Ke Q and Li K 2020 Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks Nonlinear Dyn.99 1507-23 · Zbl 1459.92136 · doi:10.1007/s11071-019-05371-1
[22] Magpantay F M G, Riolo M A, de Cellès M D, King A A and Rohani P 2014 Epidemiological consequences of imperfect vaccines for immunizing infections SIAM J. Appl. Math.74 1810-30 · Zbl 1379.92063 · doi:10.1137/140956695
[23] Marino S, Hogue I B, Ray C J and Kirschner D E 2008 A methodology for performing global uncertainty and sensitivity analysis in systems biology J. Theor. Biol.254 178-96 · Zbl 1400.92013 · doi:10.1016/j.jtbi.2008.04.011
[24] Martcheva M 2015 An Introduction to Mathematical Epidemiology (Berlin: Springer) · Zbl 1333.92006 · doi:10.1007/978-1-4899-7612-3
[25] Moreno Y, Pastor-Satorras R and Vespignani A 2002 Epidemic outbreaks in complex heterogeneous networks Eur. Phys. J. B 26 521-9 · doi:10.1007/s10051-002-8996-y
[26] Newman M E J 2001 The structure of scientific collaboration networks Proc. Natl Acad. Sci.98 404-9 · Zbl 1065.00518 · doi:10.1073/pnas.98.2.404
[27] Nudee K, Chinviriyasit S and Chinviriyasit W 2019 The effect of backward bifurcation in controlling measles transmission by vaccination Chaos Solitons Fractals123 400-12 · Zbl 1448.92327 · doi:10.1016/j.chaos.2019.04.026
[28] Pastor-Satorras R and Vespignani A 2001 Epidemic spreading in scale-free networks Phys. Rev. Lett.86 3200-3 · doi:10.1103/physrevlett.86.3200
[29] Pires M A and Crokidakis N 2017 Dynamics of epidemic spreading with vaccination: impact of social pressure and engagement Physica A 467 167-79 · Zbl 1400.92328 · doi:10.1016/j.physa.2016.10.004
[30] Pires M A, Oestereich A L and Crokidakis N 2018 Sudden transitions in coupled opinion and epidemic dynamics with vaccination J. Stat. Mech. 053407 · Zbl 1459.92141 · doi:10.1088/1742-5468/aabfc6
[31] Safan M and Rihan F A 2014 Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation Math. Comput. Simul.96 195-206 · Zbl 1519.92300 · doi:10.1016/j.matcom.2011.07.007
[32] Shaw L B and Schwartz I B 2010 Enhanced vaccine control of epidemics in adaptive networks Phys. Rev. E 81 046120 · doi:10.1103/physreve.81.046120
[33] Sun M, Zhang H, Kang H, Zhu G and Fu X 2017 Epidemic spreading on adaptively weighted scale-free networks J. Math. Biol.74 1263-98 · Zbl 1385.92054 · doi:10.1007/s00285-016-1057-6
[34] Thieme H R 1993 Persistence under relaxed point-dissipativity (with application to an endemic model) SIAM J. Math. Anal.24 407-35 · Zbl 0774.34030 · doi:10.1137/0524026
[35] Wang Z, Bauch C T, Bhattacharyya S, d’Onofrio A, Manfredi P, Perc M, Perra N, Salathé M and Zhao D 2016 Statistical physics of vaccination Phys. Rep.664 1-113 · Zbl 1359.92111 · doi:10.1016/j.physrep.2016.10.006
[36] Wu Q, Small M and Liu H 2013 Superinfection behaviors on scale-free networks with competing strains J. Nonlinear Sci.23 113-27 · Zbl 1262.34053 · doi:10.1007/s00332-012-9146-1
[37] Yang J, Martcheva M and Wang L 2015 Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence Math. Biosci.268 1-8 · Zbl 1343.92529 · doi:10.1016/j.mbs.2015.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.