×

Linear independence of rationally slice knots. (English) Zbl 1542.57003

Summary: A knot in \(S^3\) is rationally slice if it bounds a disk in a rational homology ball. We give an infinite family of rationally slice knots that are linearly independent in the knot concordance group. In particular, our examples are all infinite order. All previously known examples of rationally slice knots were order two.

MSC:

57K10 Knot theory
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)

References:

[1] 10.2140/gt.2020.24.2435 · Zbl 1464.57018 · doi:10.2140/gt.2020.24.2435
[2] ; Casson, A. J.; Gordon, C. McA., On slice knots in dimension three, Algebraic and geometric topology, II. Proc. Sympos. Pure Math., 32, 39 (1978) · Zbl 0394.57008
[3] ; Casson, A. J.; Gordon, C. McA., Cobordism of classical knots, À la recherche de la topologie perdue. Progr. Math., 62, 181 (1986)
[4] 10.1090/memo/0885 · Zbl 1130.57034 · doi:10.1090/memo/0885
[5] 10.1016/S0040-9383(01)00029-5 · Zbl 1031.57020 · doi:10.1016/S0040-9383(01)00029-5
[6] 10.2140/gt.2021.25.275 · Zbl 1464.57019 · doi:10.2140/gt.2021.25.275
[7] 10.1090/conm/035/780582 · Zbl 0566.57006 · doi:10.1090/conm/035/780582
[8] 10.1007/BFb0062971 · Zbl 0391.57018 · doi:10.1007/BFb0062971
[9] 10.1017/S147474801900015X · Zbl 1473.57036 · doi:10.1017/S147474801900015X
[10] 10.1215/00127094-3793141 · Zbl 1383.57036 · doi:10.1215/00127094-3793141
[11] 10.4171/CMH/326 · Zbl 1312.57008 · doi:10.4171/CMH/326
[12] 10.4310/JSG.2016.v14.n1.a12 · Zbl 1348.57023 · doi:10.4310/JSG.2016.v14.n1.a12
[13] ; Kawauchi, Akio, Rational-slice knots via strongly negative-amphicheiral knots, Commun. Math. Res., 25, 2, 177 (2009) · Zbl 1199.57004
[14] ; Kervaire, Michel A., Les nœuds de dimensions supérieures, Bull. Soc. Math. France, 93, 225 (1965) · Zbl 0141.21201
[15] 10.1112/blms.12152 · Zbl 1401.57020 · doi:10.1112/blms.12152
[16] 10.1093/qmath/hax062 · Zbl 1402.57016 · doi:10.1093/qmath/hax062
[17] 10.1112/jtopol/jtt008 · Zbl 1298.57025 · doi:10.1112/jtopol/jtt008
[18] 10.1007/BF01404613 · Zbl 0179.52401 · doi:10.1007/BF01404613
[19] 10.1007/BF02564525 · Zbl 0176.22101 · doi:10.1007/BF02564525
[20] 10.2140/gt.2019.23.745 · Zbl 1428.57008 · doi:10.2140/gt.2019.23.745
[21] 10.1090/memo/1216 · Zbl 1422.57080 · doi:10.1090/memo/1216
[22] 10.1016/j.aim.2009.06.001 · Zbl 1200.57011 · doi:10.1016/j.aim.2009.06.001
[23] 10.2140/agt.2012.12.293 · Zbl 1244.57018 · doi:10.2140/agt.2012.12.293
[24] 10.2307/2154613 · Zbl 0816.57007 · doi:10.2307/2154613
[25] 10.1016/j.aim.2017.05.017 · Zbl 1383.57020 · doi:10.1016/j.aim.2017.05.017
[26] 10.2140/gt.2003.7.615 · Zbl 1037.57027 · doi:10.2140/gt.2003.7.615
[27] 10.1016/j.aim.2003.05.001 · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[28] 10.4171/QT/43 · Zbl 1284.57014 · doi:10.4171/QT/43
[29] 10.1007/s00222-010-0275-6 · Zbl 1211.57009 · doi:10.1007/s00222-010-0275-6
[30] 10.1017/s0305004100044947 · Zbl 0191.54703 · doi:10.1017/s0305004100044947
[31] 10.1090/pspum/082 · doi:10.1090/pspum/082
[32] 10.1016/j.aim.2008.12.003 · Zbl 1167.57007 · doi:10.1016/j.aim.2008.12.003
[33] 10.1112/plms.12227 · Zbl 1473.57043 · doi:10.1112/plms.12227
[34] 10.1112/topo.12085 · Zbl 1455.57020 · doi:10.1112/topo.12085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.