×

Nonsimple, ribbon fibered knots. (English) Zbl 0816.57007

Summary: The connected sum of an arbitrary knot and its mirror image is a ribbon knot, however the converse is not necessarily true for all ribbon knots. We prove that the converse holds for any ribbon fibered knot which is a connected sum of iterated torus knots, knots with irreducible Alexander polynomials, or cables of such knots. This gives a practical method to detect nonribbon fibered knots. The proof uses a characterization of homotopically ribbon, fibered knots by their monodromies due to Casson and Gordon. We also study when cable fibered knots are ribbon and obtain results which support the following conjecture: If a \((p,q)\) cable of a fibered knot \(k\) is ribbon where \(p\) \((>1)\) is the winding number of a cable in \(S^ 1\times D^ 2\), then \(q=\pm 1\) and \(k\) is ribbon.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI

References:

[1] Iain R. Aitchison and Daniel S. Silver, On certain fibred ribbon disc pairs, Trans. Amer. Math. Soc. 306 (1988), no. 2, 529 – 551. · Zbl 0648.57005
[2] Francis Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 237 – 270. · Zbl 0535.57016
[3] F. Bonahon, Ribbon fibred knots, cobordism of surface diffeomorphisms and pseudo-Anosov diffeomorphisms, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 2, 235 – 251. · Zbl 0529.57004 · doi:10.1017/S0305004100061089
[4] A. J. Casson and C. McA. Gordon, A loop theorem for duality spaces and fibred ribbon knots, Invent. Math. 74 (1983), no. 1, 119 – 137. · Zbl 0538.57003 · doi:10.1007/BF01388533
[5] A. J. Casson and D. D. Long, Algorithmic compression of surface automorphisms, Invent. Math. 81 (1985), no. 2, 295 – 303. · Zbl 0589.57008 · doi:10.1007/BF01389054
[6] Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237 – 300. · Zbl 0633.57006 · doi:10.2307/1971311
[7] A. L. Edmonds and J. H. Ewing, Remarks on the cobordism group of surface diffeomorphisms, Math. Ann. 259 (1982), no. 4, 497 – 504. · Zbl 0468.57023 · doi:10.1007/BF01466055
[8] David Eisenbud and Walter Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. · Zbl 0628.57002
[9] Murray Gerstenhaber and Oscar S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531 – 1533. · Zbl 0112.02504
[10] Patrick M. Gilmer, Ribbon concordance and a partial order on \?-equivalence classes, Topology Appl. 18 (1984), no. 2-3, 313 – 324. · Zbl 0568.57005 · doi:10.1016/0166-8641(84)90016-6
[11] Robert E. Gompf and Katura Miyazaki, Some well-disguised ribbon knots, Topology Appl. 64 (1995), no. 2, 117 – 131. · Zbl 0844.57004 · doi:10.1016/0166-8641(94)00103-A
[12] C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), no. 2, 687 – 708. · Zbl 0519.57005
[13] C. McA. Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257 (1981), no. 2, 157 – 170. · Zbl 0451.57001 · doi:10.1007/BF01458281
[14] C. McA. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987), no. 3, 285 – 299. · Zbl 0634.57007 · doi:10.1016/0166-8641(87)90093-9
[15] C. McA. Gordon and R. A. Litherland, On the signature of a link, Invent. Math. 47 (1978), no. 1, 53 – 69. · Zbl 0391.57004 · doi:10.1007/BF01609479
[16] Jonathan L. Gross and Thomas W. Tucker, Topological graph theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. · Zbl 0621.05013
[17] Richard I. Hartley, Invertible amphicheiral knots, Math. Ann. 252 (1979/80), no. 2, 103 – 109. · Zbl 0424.57004 · doi:10.1007/BF01420117
[18] William H. Jaco and Peter B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. · Zbl 0471.57001 · doi:10.1090/memo/0220
[19] K. Johannson, Homotopy equivalence of \( 3\)-manifolds with boundary, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin and New York, 1979. · Zbl 0412.57007
[20] Akio Kawauchi, On links not cobordant to split links, Topology 19 (1980), no. 4, 321 – 334. · Zbl 0447.57014 · doi:10.1016/0040-9383(80)90017-8
[21] Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273 – 312. · Zbl 0394.57002
[22] Charles Livingston and Paul Melvin, Algebraic knots are algebraically dependent, Proc. Amer. Math. Soc. 87 (1983), no. 1, 179 – 180. · Zbl 0522.57007
[23] Yaichi Shinohara, On the signature of knots and links, Trans. Amer. Math. Soc. 156 (1971), 273 – 285. · Zbl 0218.55002
[24] G. A. Swarup, Cable knots in homotopy 3-spheres, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 121, 97 – 104. · Zbl 0453.57003 · doi:10.1093/qmath/31.1.97
[25] Chichen M. Tsau, Isomorphisms and peripheral structure of knot groups, Math. Ann. 282 (1988), no. 2, 343 – 348. · Zbl 0629.57004 · doi:10.1007/BF01456980
[26] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56 – 88. · Zbl 0157.30603 · doi:10.2307/1970594
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.