×

\(kq\)-resolutions. I. (English) Zbl 1542.55004

In this paper, working in motivic stable homotopy theory over a field \(F\) of characteristic \(\neq 2\), the authors study and exploit the \(kq\)-based Adams spectral sequence, where \(kq\) is the very effective cover of Hermitian \(K\)-theory, \(KQ\) [A. Ananyevskiy et al., Math. Z. 294, No. 3–4, 1021–1034 (2020; Zbl 1453.14064)]. They also use \(ksp\), the very effective cover of \(\Sigma^{4,2} KQ\).
The unit map \(S^{0,0} \rightarrow kq\) induces an isomorphism for \(n \in \mathbb{N}\), \(\pi_{n,n}^F(S^{0,0}) \cong \pi_{n,n}^F (kq)\), which thus identifies with Milnor-Witt \(K\)-theory \(K^{MW}_n (F)\). In particular the cofibre \(\overline{kq}\) of the unit is \(1\)-connected in the homotopy \(t\)-structure. This leads to good convergence properties of the \(kq\)-based Adams spectral sequence, which has the form \[ E_1 = \pi_{t,u} ^F (kq \wedge \overline{kq}^{\wedge n}) \Rightarrow \pi^F_{t-n, u}(S^{0,0}). \] For the main results, \(F\) is taken to be algebraically closed of characteristic zero (the authors discuss which results are expected to extend and how). They work with \(2\)-complete cellular motivic spectra and the \(2\)-complete version of the spectral sequence.
A key fact is that the Betti realization \(kq (\mathbb{C})\) identifies with \(bo\), hence realization induces a map of spectral sequences from the \(kq\)-based Adams spectral sequence to the classical \(bo\)-based Adams spectral sequence, allowing Mahowald’s work, e.g. [M. Mahowald, Pac. J. Math. 92, 365–383 (1981; Zbl 0476.55021)], to be input into calculations, together with more recent work such as [A. Beaudry et al., J. Topol. 13, No. 1, 356–415 (2020; Zbl 1469.55013)]. The motivic setting presents additional complications.
To analyse the \(E_1\)-page motivically, in particular \(kq\)-cooperations \(\pi_{*,*} (kq \wedge kq)\), the authors ‘lift’ Mahowald’s approach, working with the motivic Steenrod algebra \(A\) and the appropriate subalgebra \(A (1)\), together with their duals and comodules over \(A (1) ^\vee\). They use motivic integral Brown-Gitler \(A (1)^\vee\)-comodules, \(H \underline{\mathbb{Z}}_j\), for natural numbers \(j\), which are constructed as sub comodules of \((A /\!/ A(0))^\vee\), mimicking the classical construction. They then calculate (up to \(v_1\)-torsion) \(\mathrm{Ext}_{A (1)^\vee} (H \underline{\mathbb{Z}}_j) \) as \(\mathrm{Ext}_{A (1)^\vee} (\mathbb{M}_2)\)-modules, where \(\mathbb{M}_2\) is the coefficient ring of the mod \(2\) motivic homology spectrum \(H \mathbb{F}_2\). For instance, \(\mathrm{Ext}_{A (1)^\vee} (H \underline{\mathbb{Z}}_1) \) is isomorphic to \(\pi_{*,*} (ksp)\).
The motivic integral Brown-Gitler modules provide the splitting of \(A (1)^\vee\)-comodules: \[ (A / \!/ A(1) ) ^\vee \cong \bigoplus_{i \geq 0} \Sigma^{4i,2i} H \underline{\mathbb{Z}}_i , \] so that the motivic Adams spectral sequence converging to \(\pi_{*,*} (kq \wedge kq)\) has \(E_2\)-page \(\bigoplus_{i \geq 0} \mathrm{Ext}_{A (1)^\vee} (\Sigma^{4i,2i} H \underline{\mathbb{Z}}_i)\). Using Betti realization, they show that this spectral sequence collapses at the \(E_2\)-page, thus their results calculate the \(E_\infty\)-page of this spectral sequence up to \(v_1\)-torsion.
They then analyse the \(E_1\)-page of the \(kq\)-based Adams spectral sequence and the differentials. Their main result calculates the \(0\)- and \(1\)-lines of the \(E_\infty\)-page, together with giving a vanishing line. They also prove that the \(E_2\)-page has a vanishing line of slope \(\frac{1}{5}\).
For this, the authors exploit Mahowald’s results and methods using Betti realization; this requires care with treating \(\tau\)-torsion, which vanishes under realization. The proof of the vanishing line for the \(E_2\)-page uses a delicate argument involving a motivic spectrum \(A_1\) that realizes \(A(1)\) in motivic cohomology as an \(A(1)\)-module, and which has the property that \(A_1 \wedge kq \simeq H \mathbb{F}_2\).
The authors give applications of these results. For instance, they recover the calculation of \(\pi_{*,*} (\eta^{-1} S^{0,0})\) due to [M. Andrews and H. Miller, J. Topol. 10, No. 4, 1145–1168 (2017; Zbl 1422.55034)]. They also show that the \(0\)- and \(1\)-lines of the \(E_\infty\)-page account for the \(v_1\)-periodic classes in \(\pi_{*,*}(S^0)\). Moreover, they exhibit a candidate motivic connective image of \(J\)-spectrum, \(j_o\), defined as the fibre in a sequence \[ j_o \rightarrow kq \rightarrow \Sigma^{4,2} ksp \] and prove that the homotopy of \(\pi_{*,*} (j_o)\) is given by these \(0\)- and \(1\)-lines.

MSC:

55Q45 Stable homotopy of spheres
55Q51 \(v_n\)-periodicity
55Q10 Stable homotopy groups
55T15 Adams spectral sequences
14F42 Motivic cohomology; motivic homotopy theory

References:

[1] Adams, J. F., On the groups \(J(X)\). IV, Topology, 5, 21-71 (1966) · Zbl 0145.19902 · doi:10.1016/0040-9383(66)90004-8
[2] Ananyevskiy, Alexey, On the relation of special linear algebraic cobordism to Witt groups, Homology Homotopy Appl., 18, 1, 204-230 (2016) · Zbl 1352.14012 · doi:10.4310/HHA.2016.v18.n1.a11
[3] Ananyevskiy, Alexey, Stable operations and cooperations in derived Witt theory with rational coefficients, Ann. K-Theory, 2, 4, 517-560 (2017) · Zbl 1401.14117 · doi:10.2140/akt.2017.2.517
[4] Ananyevskiy, Alexey; R\"{o}ndigs, Oliver; \O stv\ae r, Paul Arne, On very effective hermitian \(K\)-theory, Math. Z., 294, 3-4, 1021-1034 (2020) · Zbl 1453.14064 · doi:10.1007/s00209-019-02302-z
[5] AHR10 Matthew Ando, Michael J. Hopkins, and Charles Rezk, Multiplicative orientations of KO-theory and of the spectrum of topological modular forms, Preprint, 2010.
[6] Andrews, Michael J., New families in the homotopy of the motivic sphere spectrum, Proc. Amer. Math. Soc., 146, 6, 2711-2722 (2018) · Zbl 1422.55027 · doi:10.1090/proc/13940
[7] Andrews, Michael; Miller, Haynes, Inverting the Hopf map, J. Topol., 10, 4, 1145-1168 (2017) · Zbl 1422.55034 · doi:10.1112/topo.12034
[8] Bachmann, Tom, The generalized slices of Hermitian \(K\)-theory, J. Topol., 10, 4, 1124-1144 (2017) · Zbl 1453.14065 · doi:10.1112/topo.12032
[9] BH20 Tom Bachmann and Michael Hopkins, \( \eta \)-periodic motivic stable homotopy theory over fields, 2005.06778, 2020.
[10] BH17 Tom Bachmann and Marc Hoyois, Norms in motivic homotopy theory, arXiv preprint 1711.03061, 2017.
[11] Balmer, Paul; Sanders, Beren, The spectrum of the equivariant stable homotopy category of a finite group, Invent. Math., 208, 1, 283-326 (2017) · Zbl 1373.18016 · doi:10.1007/s00222-016-0691-3
[12] Barthel, Tobias; Hausmann, Markus; Naumann, Niko; Nikolaus, Thomas; Noel, Justin; Stapleton, Nathaniel, The Balmer spectrum of the equivariant homotopy category of a finite abelian group, Invent. Math., 216, 1, 215-240 (2019) · Zbl 1417.55016 · doi:10.1007/s00222-018-0846-5
[13] Beaudry, A.; Behrens, M.; Bhattacharya, P.; Culver, D.; Xu, Z., On the \(E_2\)-term of the bo-Adams spectral sequence, J. Topol., 13, 1, 356-415 (2020) · Zbl 1469.55013 · doi:10.1112/topo.12136
[14] Behrens, M.; Hill, M.; Hopkins, M. J.; Mahowald, M., On the existence of a \(v^{32}_2\)-self map on \(M(1,4)\) at the prime 2, Homology Homotopy Appl., 10, 3, 45-84 (2008) · Zbl 1162.55010
[15] Behrens, M.; Ormsby, K.; Stapleton, N.; Stojanoska, V., On the ring of cooperations for 2-primary connective topological modular forms, J. Topol., 12, 2, 577-657 (2019) · Zbl 1444.55004 · doi:10.1112/topo.12094
[16] Behrens, Mark; Shah, Jay, \(C_2\)-equivariant stable homotopy from real motivic stable homotopy, Ann. K-Theory, 5, 3, 411-464 (2020) · Zbl 1475.55011 · doi:10.2140/akt.2020.5.411
[17] Belmont, Eva; Guillou, Bertrand J.; Isaksen, Daniel C., \(C_2\)-equivariant and \(\mathbb{R} \)-motivic stable stems II, Proc. Amer. Math. Soc., 149, 1, 53-61 (2021) · Zbl 1479.55022 · doi:10.1090/proc/15167
[18] BI20 Eva Belmont and Daniel C Isaksen, R-motivic stable stems, arXiv preprint 2001.03606, 2020.
[19] Borghesi, Simone, Algebraic Morava \(K\)-theories, Invent. Math., 151, 2, 381-413 (2003) · Zbl 1030.55003 · doi:10.1007/s00222-002-0257-4
[20] Bousfield, A. K., The localization of spectra with respect to homology, Topology, 18, 4, 257-281 (1979) · Zbl 0417.55007 · doi:10.1016/0040-9383(79)90018-1
[21] Culver, Dominic Leon, On \(\text{BP}\langle 2\rangle \)-cooperations, Algebr. Geom. Topol., 19, 2, 807-862 (2019) · Zbl 1420.55029 · doi:10.2140/agt.2019.19.807
[22] Davis, Donald M.; Mahowald, Mark, The image of the stable \(J\)-homomorphism, Topology, 28, 1, 39-58 (1989) · Zbl 0702.55013 · doi:10.1016/0040-9383(89)90031-1
[23] Devinatz, Ethan S.; Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. I, Ann. of Math. (2), 128, 2, 207-241 (1988) · Zbl 0673.55008 · doi:10.2307/1971440
[24] Topological modular forms, Mathematical Surveys and Monographs 201, xxxii+318 pp. (2014), American Mathematical Society, Providence, RI · Zbl 1304.55002 · doi:10.1090/surv/201
[25] Dugger, Daniel; Isaksen, Daniel C., \( \mathbb{Z}/2\)-equivariant and \(\mathbb{R} \)-motivic stable stems, Proc. Amer. Math. Soc., 145, 8, 3617-3627 (2017) · Zbl 1421.55011 · doi:10.1090/proc/13505
[26] Dugger, Daniel; Isaksen, Daniel C., Motivic cell structures, Algebr. Geom. Topol., 5, 615-652 (2005) · Zbl 1086.55013 · doi:10.2140/agt.2005.5.615
[27] Dugger, Daniel; Isaksen, Daniel C., The motivic Adams spectral sequence, Geom. Topol., 14, 2, 967-1014 (2010) · Zbl 1206.14041 · doi:10.2140/gt.2010.14.967
[28] Friedlander, Eric M., The infinite loop Adams conjecture via classification theorems for \({\mathcal{F}} \)-spaces, Math. Proc. Cambridge Philos. Soc., 87, 1, 109-150 (1980) · Zbl 0426.55010 · doi:10.1017/S0305004100056577
[29] Ghe17b Bogdan Gheorghe, Exotic motivic periodicities, arXiv preprint 1709.00915, 2017.
[30] GIKR18 Bogdan Gheorghe, Daniel Isaksen, Achim Krause, and Nicolas Ricka, \( \mathbbC \)-motivic modular forms, arXiv preprint 1810.11050, 2018.
[31] Gheorghe, Bogdan, The motivic cofiber of \(\tau \), Doc. Math., 23, 1077-1127 (2018) · Zbl 0225.50011 · doi:10.4153/cjm-1971-110-9
[32] Gre12 Thomas Gregersen, A Singer construction in motivic homotopy theory, PhD thesis, University of Oslo, Norway, 2012.
[33] GHKRO20 Thomas Gregersen, Jeremiah Heller, Jonas Irgens Kylling, John Rognes, and Paul Arne stvr, A motivic Segal conjecture for the group of order two, In preparation, 2020.
[34] Guillou, Bertrand J.; Isaksen, Daniel C., The \(\eta \)-inverted \(\mathbb{R} \)-motivic sphere, Algebr. Geom. Topol., 16, 5, 3005-3027 (2016) · Zbl 1395.14014 · doi:10.2140/agt.2016.16.3005
[35] Guillou, Bertrand J.; Hill, Michael A.; Isaksen, Daniel C.; Ravenel, Douglas Conner, The cohomology of \(C_2\)-equivariant \(\mathcal{A}(1)\) and the homotopy of \({\text{ko}}_{C_2} \), Tunis. J. Math., 2, 3, 567-632 (2020) · Zbl 1440.14124 · doi:10.2140/tunis.2020.2.567
[36] Guillou, Bertrand J.; Isaksen, Daniel C., The \(\eta \)-local motivic sphere, J. Pure Appl. Algebra, 219, 10, 4728-4756 (2015) · Zbl 1327.14107 · doi:10.1016/j.jpaa.2015.03.004
[37] Heller, J.; Ormsby, K., Galois equivariance and stable motivic homotopy theory, Trans. Amer. Math. Soc., 368, 11, 8047-8077 (2016) · Zbl 1346.14049 · doi:10.1090/tran6647
[38] Hill, Michael A., Ext and the motivic Steenrod algebra over \(\mathbb{R} \), J. Pure Appl. Algebra, 215, 5, 715-727 (2011) · Zbl 1222.55014 · doi:10.1016/j.jpaa.2010.06.017
[39] Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. II, Ann. of Math. (2), 148, 1, 1-49 (1998) · Zbl 0924.55010 · doi:10.2307/120991
[40] Hornbostel, Jens, Localizations in motivic homotopy theory, Math. Proc. Cambridge Philos. Soc., 140, 1, 95-114 (2006) · Zbl 1094.55014 · doi:10.1017/S030500410500890X
[41] Hornbostel, Jens, Some comments on motivic nilpotence, Trans. Amer. Math. Soc., 370, 4, 3001-3015 (2018) · Zbl 1423.14154 · doi:10.1090/tran/7324
[42] Hovey, Mark; Palmieri, John H.; Strickland, Neil P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., 128, 610, x+114 pp. (1997) · Zbl 0881.55001 · doi:10.1090/memo/0610
[43] Hoyois, Marc; Kelly, Shane; \O stv\ae r, Paul Arne, The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. (JEMS), 19, 12, 3813-3849 (2017) · Zbl 1386.14087 · doi:10.4171/JEMS/754
[44] Hu, P.; Kriz, I.; Ormsby, K., Convergence of the motivic Adams spectral sequence, J. K-Theory, 7, 3, 573-596 (2011) · Zbl 1309.14018 · doi:10.1017/is011003012jkt150
[45] Hu, P.; Kriz, I.; Ormsby, K., The homotopy limit problem for Hermitian K-theory, equivariant motivic homotopy theory and motivic Real cobordism, Adv. Math., 228, 1, 434-480 (2011) · Zbl 1247.14020 · doi:10.1016/j.aim.2011.05.019
[46] Hu, Po; Kriz, Igor; Ormsby, Kyle, Remarks on motivic homotopy theory over algebraically closed fields, J. K-Theory, 7, 1, 55-89 (2011) · Zbl 1248.14026 · doi:10.1017/is010001012jkt098
[47] Isaksen, Daniel C., Stable stems, Mem. Amer. Math. Soc., 262, 1269, viii+159 pp. (2019) · Zbl 1454.55001 · doi:10.1090/memo/1269
[48] Isaksen, Daniel C.; Shkembi, Armira, Motivic connective \(K\)-theories and the cohomology of A(1), J. K-Theory, 7, 3, 619-661 (2011) · Zbl 1266.14015 · doi:10.1017/is011004009jkt154
[49] IWX20 Daniel C Isaksen, Guozhen Wang, and Zhouli Xu, More stable stems, arXiv preprint 2001.04511, 2020.
[50] Johnson, David Copeland; Wilson, W. Stephen, \(BP\) operations and Morava’s extraordinary \(K\)-theories, Math. Z., 144, 1, 55-75 (1975) · Zbl 0309.55003 · doi:10.1007/BF01214408
[51] Kra18 Achim Krause, Periodicity in motivic homotopy theory and over \(BP_*BP\), PhD thesis, Universit\"at Bonn, 2018.
[52] Lellmann, Wolfgang; Mahowald, Mark, The \(b{\text{o}} \)-Adams spectral sequence, Trans. Amer. Math. Soc., 300, 2, 593-623 (1987) · Zbl 0646.55013 · doi:10.2307/2000359
[53] Levine, Marc, The homotopy coniveau tower, J. Topol., 1, 1, 217-267 (2008) · Zbl 1154.14005 · doi:10.1112/jtopol/jtm004
[54] Mahowald, Mark, \(b{\text{o}} \)-Resolutions, Pacific J. Math., 92, 2, 365-383 (1981) · Zbl 0476.55021
[55] Mahowald, Mark, An addendum to: “\(b{\text{o}} \)-resolutions” [Pacific J. Math. {\bf 92} (1981), no. 2, 365-383; MR0618072 (82m:55017)], Pacific J. Math., 111, 1, 117-123 (1984) · Zbl 0547.55021
[56] Mahowald, Mark; Ravenel, Douglas; Shick, Paul, The triple loop space approach to the telescope conjecture. Homotopy methods in algebraic topology, Boulder, CO, 1999, Contemp. Math. 271, 217-284 (2001), Amer. Math. Soc., Providence, RI · Zbl 0984.55009 · doi:10.1090/conm/271/04358
[57] Man18 Lorenzo Mantovani, Localizations and completions in motivic homotopy theory, arXiv preprint 1810.04134, 2018.
[58] Miller, Haynes, Finite localizations, Bol. Soc. Mat. Mexicana (2), 37, 1-2, 383-389 (1992) · Zbl 0852.55015
[59] Milnor, John, The Steenrod algebra and its dual, Ann. of Math. (2), 67, 150-171 (1958) · Zbl 0080.38003 · doi:10.2307/1969932
[60] Morel, Fabien, Suite spectrale d’Adams et invariants cohomologiques des formes quadratiques, C. R. Acad. Sci. Paris S\'{e}r. I Math., 328, 11, 963-968 (1999) · Zbl 0937.19002 · doi:10.1016/S0764-4442(99)80306-1
[61] Morel, Fabien, \( \mathbb{A}^1\)-algebraic topology over a field, Lecture Notes in Mathematics 2052, x+259 pp. (2012), Springer, Heidelberg · Zbl 1263.14003 · doi:10.1007/978-3-642-29514-0
[62] Morel, Fabien; Voevodsky, Vladimir, \({\mathbf{A}}^1\)-homotopy theory of schemes, Inst. Hautes \'{E}tudes Sci. Publ. Math., 90, 45-143 (2001) (1999) · Zbl 0983.14007
[63] Ormsby, Kyle; R\"{o}ndigs, Oliver, The homotopy groups of the \(\eta \)-periodic motivic sphere spectrum, Pacific J. Math., 306, 2, 679-697 (2020) · Zbl 1444.14051 · doi:10.2140/pjm.2020.306.679
[64] Ormsby, Kyle M.; \O stv\ae r, Paul Arne, Stable motivic \(\pi_1\) of low-dimensional fields, Adv. Math., 265, 97-131 (2014) · Zbl 1304.55008 · doi:10.1016/j.aim.2014.07.024
[65] Quigley, J. D., The motivic Mahowald invariant, Algebr. Geom. Topol., 19, 5, 2485-2534 (2019) · Zbl 1436.55016 · doi:10.2140/agt.2019.19.2485
[66] Qui19c J. D. Quigley, Motivic Mahowald invariant over general base fields, arXiv preprint 1905.03902, 2019.
[67] Qui19b J.D. Quigley. Real motivic and \(C_2\)-equivariant Mahowald invariants. Journal of Topology 14 (2021), no. 2, 369-418, DOI 10.1112/topo.12185. · Zbl 1519.55007
[68] Quillen, Daniel, The Adams conjecture, Topology, 10, 67-80 (1971) · Zbl 0219.55013 · doi:10.1016/0040-9383(71)90018-8
[69] Ravenel, Douglas C., Localization with respect to certain periodic homology theories, Amer. J. Math., 106, 2, 351-414 (1984) · Zbl 0586.55003 · doi:10.2307/2374308
[70] Ravenel, Douglas C., Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies 128, xiv+209 pp. (1992), Princeton University Press, Princeton, NJ · Zbl 0774.55001
[71] R\"{o}ndigs, Oliver, On the \(\eta \)-inverted sphere. \(K\)-Theory-Proceedings of the International Colloquium, Mumbai, 2016, 41-63 (2018), Hindustan Book Agency, New Delhi · Zbl 1451.14069
[72] R\"{o}ndigs, Oliver; \O stv\ae r, Paul Arne, Slices of hermitian \(K\)-theory and Milnor’s conjecture on quadratic forms, Geom. Topol., 20, 2, 1157-1212 (2016) · Zbl 1416.19001 · doi:10.2140/gt.2016.20.1157
[73] R\"{o}ndigs, Oliver; Spitzweck, Markus; \O stv\ae r, Paul Arne, The first stable homotopy groups of motivic spheres, Ann. of Math. (2), 189, 1, 1-74 (2019) · Zbl 1406.14018 · doi:10.4007/annals.2019.189.1.1
[74] Spitzweck, Markus; \O stv\ae r, Paul Arne, Motivic twisted \(K\)-theory, Algebr. Geom. Topol., 12, 1, 565-599 (2012) · Zbl 1282.14040 · doi:10.2140/agt.2012.12.565
[75] Sullivan, Dennis, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2), 100, 1-79 (1974) · Zbl 0355.57007 · doi:10.2307/1970841
[76] Voevodsky, Vladimir, Open problems in the motivic stable homotopy theory. I. Motives, polylogarithms and Hodge theory, Part I, Irvine, CA, 1998, Int. Press Lect. Ser. 3, 3-34 (2002), Int. Press, Somerville, MA · Zbl 1047.14012
[77] Voevodsky, Vladimir, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes \'{E}tudes Sci., 98, 1-57 (2003) · Zbl 1057.14027 · doi:10.1007/s10240-003-0009-z
[78] Wilson, Glen Matthew, The eta-inverted sphere over the rationals, Algebr. Geom. Topol., 18, 3, 1857-1881 (2018) · Zbl 1394.14015 · doi:10.2140/agt.2018.18.1857
[79] Wilson, Glen Matthew; \O stv\ae r, Paul Arne, Two-complete stable motivic stems over finite fields, Algebr. Geom. Topol., 17, 2, 1059-1104 (2017) · Zbl 1361.14020 · doi:10.2140/agt.2017.17.1059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.