×

On very effective Hermitian \(K\)-theory. (English) Zbl 1453.14064

Summary: We argue that the very effective cover of hermitian \(K\)-theory in the sense of motivic homotopy theory is a convenient algebro-geometric generalization of the connective real topological \(K\)-theory spectrum. This means the very effective cover acquires the correct Betti realization, its motivic cohomology has the desired structure as a module over the motivic Steenrod algebra, and that its motivic Adams and slice spectral sequences are amenable to calculations.

MSC:

14F42 Motivic cohomology; motivic homotopy theory
19G38 Hermitian \(K\)-theory, relations with \(K\)-theory of rings

References:

[1] Adams, Jf, Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics (1974), Chicago: The University of Chicago Press, Chicago · Zbl 0309.55016
[2] Bachmann, T., The generalized slices of hermitian \(K\)-theory, J. Topol., 10, 4, 1124-1144 (2017) · Zbl 1453.14065 · doi:10.1112/topo.12032
[3] Berthelot, P.; Jussila, O.; Grothendieck, A.; Raynaud, M.; Kleiman, S.; Illusie, L.; Berthelot, Pierre, Théorie des Intersections et Théorème de Riemann-Roch (1971), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg
[4] Cisinski, Dc, Descente par éclatements en \(K\)-théorie invariante par homotopie, Ann. Math. (2), 177, 2, 425-448 (2013) · Zbl 1264.19003 · doi:10.4007/annals.2013.177.2.2
[5] Greenlees, J., Equivariant versions of real and complex connective \(K\)-theory, Homol. Homotopy Appl., 7, 3, 63-82 (2005) · Zbl 1086.19003 · doi:10.4310/HHA.2005.v7.n3.a5
[6] Guillou, B.J., Hill, M.A., Isaksen, D.C., Ravenel, D.C.: The cohomology of \({C}_2\)-equivariant \(\cal{A}(1)\) and the homotopy of \(ko_{C_2} \). arXiv:1708:09568 · Zbl 1440.14124
[7] Gutiérrez, Jj; Röndigs, O.; Spitzweck, M.; Østvær, P., Motivic slices and coloured operads, J. Topol., 5, 3, 727-755 (2012) · Zbl 1258.18012 · doi:10.1112/jtopol/jts015
[8] Heller, J.; Ormsby, K., Galois equivariance and stable motivic homotopy theory, Trans. Am. Math. Soc., 368, 11, 8047-8077 (2016) · Zbl 1346.14049 · doi:10.1090/tran6647
[9] Hill, Ma, Ext and the motivic Steenrod algebra over \(\mathbb{R} \), J. Pure Appl. Algebra, 215, 5, 715-727 (2011) · Zbl 1222.55014 · doi:10.1016/j.jpaa.2010.06.017
[10] Hornbostel, J., \( \mathbb{A}^1\)-representability of hermitian \(K\)-theory and Witt groups, Topology, 44, 3, 661-687 (2005) · Zbl 1078.19004 · doi:10.1016/j.top.2004.10.004
[11] Hoyois, M., From algebraic cobordism to motivic cohomology, J. Reine Angew. Math., 702, 173-226 (2015) · Zbl 1382.14006 · doi:10.1515/crelle-2013-0038
[12] Hoyois, M.; Kelly, S.; Østvær, P., The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. (JEMS), 19, 12, 3813-3849 (2017) · Zbl 1386.14087 · doi:10.4171/JEMS/754
[13] Isaksen, Dc; Shkembi, A., Motivic connective \(K\)-theories and the cohomology of A(1), J. K-Theory, 7, 3, 619-661 (2011) · Zbl 1266.14015 · doi:10.1017/is011004009jkt154
[14] Karoubi, M., Théorie de Quillen et homologie du groupe orthogonal, Ann. Math. (2), 112, 2, 207-257 (1980) · Zbl 0478.18008 · doi:10.2307/1971326
[15] Kerz, M.; Strunk, F., On the vanishing of negative homotopy \(K\)-theory, J. Pure Appl. Algebra, 221, 7, 1641-1644 (2017) · Zbl 1372.19003 · doi:10.1016/j.jpaa.2016.12.021
[16] Levine, M., The homotopy coniveau tower., J. Topol., 1, 1, 217-267 (2008) · Zbl 1154.14005 · doi:10.1112/jtopol/jtm004
[17] Morel, F.: On the motivic \(\pi_0\) of the sphere spectrum. In: Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, pp. 219-260. Kluwer, Dordrecht (2004) · Zbl 1130.14019
[18] Morel, Fabien, The Stable [graphic]\[ \mathbb{A}^1\]-Connectivity Theorems, K-Theory, 35, 1-2, 1-68 (2005) · Zbl 1117.14023 · doi:10.1007/s10977-005-1562-7
[19] Morel, F.: \( \mathbb{A}^1\)-Algebraic Topology Over a Field. Lecture Notes in Mathematics, vol. 2052. Springer, Heidelberg (2012) · Zbl 1263.14003
[20] Naumann, N.; Spitzweck, M.; Østvær, P., Motivic Landweber exactness, Doc. Math., 14, 551-593 (2009) · Zbl 1230.55005
[21] Panin, Ivan; Pimenov, Konstantin; Röndigs, Oliver, On Voevodsky’s Algebraic K-Theory Spectrum, Algebraic Topology, 279-330 (2009), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1179.14022
[22] Röndigs, O.; Østvær, P., The multiplicative structure on the slices of hermitian \({K}\)-theory and Witt-theory, Homol. Homotopy Appl., 18, 1, 373-380 (2016) · Zbl 1352.14013 · doi:10.4310/HHA.2016.v18.n1.a20
[23] Röndigs, O.; Østvær, P., Slices of hermitian \({K}\)-theory and Milnor’s conjecture on quadratic forms, Geom. Topol., 20, 2, 1157-1212 (2016) · Zbl 1416.19001 · doi:10.2140/gt.2016.20.1157
[24] Röndigs, O.; Spitzweck, M.; Østvær, P., The motivic Hopf map solves the homotopy limit problem for \(K\)-theory, Doc. Math., 23, 1405-1424 (2018) · Zbl 1423.14157
[25] Röndigs, O.; Spitzweck, M.; Østvær, P., The first stable homotopy groups of motivic spheres, Ann. Math. (2), 189, 1, 1-74 (2019) · Zbl 1406.14018 · doi:10.4007/annals.2019.189.1.1
[26] Spitzweck, M., Relations between slices and quotients of the algebraic cobordism spectrum, Homol. Homotopy Appl., 12, 2, 335-351 (2010) · Zbl 1209.14019 · doi:10.4310/HHA.2010.v12.n2.a11
[27] Spitzweck, M., A commutative \({\bf P}^1\)-spectrum representing motivic cohomology over Dedekind domains, Mém. Soc. Math. Fr. Nouv. Sér., 157, 110 (2018) · Zbl 1408.14081
[28] Spitzweck, M.; Østvær, Pa, Motivic twisted \(K\)-theory, Algebr. Geom. Topol., 12, 1, 565-599 (2012) · Zbl 1282.14040 · doi:10.2140/agt.2012.12.565
[29] Voevodsky, V.: \( \mathbf{A}^1\)-homotopy theory. In: Proceedings of the International Congress of Mathematicians, vol. I (Berlin, 1998), Extra Vol. I, pp. 579-604 (1998) (electronic) · Zbl 0907.19002
[30] Voevodsky, V.: Open problems in the motivic stable homotopy theory. I. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., vol. 3, pp. 3-34. Int. Press, Somerville (2002) · Zbl 1047.14012
[31] Voevodsky, V.: A possible new approach to the motivic spectral sequence for algebraic \(K\)-theory. In: Recent Progress in Homotopy Theory (Baltimore, MD, 2000), Contemp. Math., vol. 293, pp. 371-379. Amer. Math. Soc., Providence (2002) · Zbl 1009.19003
[32] Voevodsky, V., Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci., 98, 1-57 (2003) · Zbl 1057.14027 · doi:10.1007/s10240-003-0009-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.