×

Multipolar potentials and weighted Hardy inequalities. (English) Zbl 1542.35016

Summary: In this paper we state the following weighted Hardy type inequality for any functions \(\varphi\) in a weighted Sobolev space and for weight functions \(\mu\) of a quite general type \[ c_{N, \mu} \int_{\mathbb{R}^N}V\, \varphi^2\mu(x)dx\le \int_{\mathbb{R}^N}|\nabla \varphi|^2\mu(x)dx +C_\mu \int_{\mathbb{R}^N}W \varphi^2\mu(x)dx, \] where \(V\) is a multipolar potential and \(W\) is a bounded function from above depending on \(\mu \). Our method is based on introducing a suitable vector-valued function and an integral identity that we state in the paper. We prove that the constant \(c_{N, \mu}\) in the estimate is optimal by building a suitable sequence of functions.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35K15 Initial value problems for second-order parabolic equations
35K65 Degenerate parabolic equations
35B25 Singular perturbations in context of PDEs
34G10 Linear differential equations in abstract spaces
47D03 Groups and semigroups of linear operators

References:

[1] P. J. A. Baras Goldstein, The heat equation with a singular potential, Trans. Am. Math. Soc., 284, 121-139, 1984 · Zbl 0556.35063 · doi:10.1090/S0002-9947-1984-0742415-3
[2] R. J. M. J. Bosi Dolbeault Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7, 533-562, 2008 · Zbl 1162.35329 · doi:10.3934/cpaa.2008.7.533
[3] X. Y. Cabré Martel, Existence versus explosion instantanée pour des e \(\acute{{\rm{q}}}\) uations de la chaleur lineáires avec potentiel singulier, C. R. Acad. Sci. Paris, 329, 973-978, 1999 · Zbl 0940.35105 · doi:10.1016/S0764-4442(00)88588-2
[4] A. Canale, A class of weighted Hardy type inequalities in \(\mathbb{R}^N\), Ric. Mat., 2021 · Zbl 1536.35016 · doi:10.1007/s11587-021-00628-7
[5] A. Canale, Local and non-local improved Hardy inequalities with weights, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 33, 385-398, 2022 · Zbl 1500.35006 · doi:10.4171/RLM/974
[6] A. Canale, Improved Hardy inequalities with a class of weights, Mathematics, 11, 1005, 2023 · doi:10.3390/math11041005
[7] A. F. A. C. Canale Gregorio Rhandi Tacelli, Weighted Hardy’s inequalities and Kolmogorov-type operators, Appl. Anal., 98, 1236-1254, 2019 · Zbl 1412.35160 · doi:10.1080/00036811.2017.1419200
[8] A. F. Canale Pappalardo, Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463, 895-909, 2018 · Zbl 1387.35015 · doi:10.1016/j.jmaa.2018.03.059
[9] A. F. C. Canale Pappalardo Tarantino, A class of weighted Hardy inequalities and applications to evolution problems, Ann. Mat. Pura Appl., 199, 1171-1181, 2020 · Zbl 1445.35015 · doi:10.1007/s10231-019-00916-y
[10] A. F. C. Canale Pappalardo Tarantino, Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials, Commun. Pure Appl. Anal., 20, 405-425, 2021 · Zbl 1470.35008 · doi:10.3934/cpaa.2020274
[11] C. Cazacu and E. Zuazua, Improved multipolar Hardy inequalities, in Studies in Phase Space Analysis of PDEs, Progress in Nonlinear Differential Equations and Their Applications, 84, Birkhäuser, New York, (2013), 35-52. · Zbl 1283.35098
[12] E. B. Davies, A review of Hardy inequalities, in Oper. Theory Adv. Appl., 110, Birkhäuser, Basel, (1999), 55-67. · Zbl 0936.35121
[13] V. E. M. S. Felli Marchini Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250, 265-316, 2007 · Zbl 1222.35074 · doi:10.1016/j.jfa.2006.10.019
[14] J. P. I. García Azorero Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144, 441-476, 1998 · Zbl 0918.35052 · doi:10.1006/jdeq.1997.3375
[15] G. R. Goldstein, J. A. Goldstein and I. Kombe, The power potential and nonexistence of positive solutions, in Differential Equations. Inverse and Direct Problems. Lecture Notes in Pure and Applied Mathematics, 251, CRC Press, (2006), 183-195. · Zbl 1123.35329
[16] G. R. J. A. A. Goldstein Goldstein Rhandi, Kolmogorov equation perturbed by an inverse-square potential, Discrete Contin. Dyn. Syst. Ser. S, 4, 623-630, 2011 · Zbl 1213.35275 · doi:10.3934/dcdss.2011.4.623
[17] G. R. J. A. A. Goldstein Goldstein Rhandi, Weighted Hardy’s inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91, 2057-2071, 2012 · Zbl 1255.35127 · doi:10.1080/00036811.2011.587809
[18] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6, 314-317, 1920 · JFM 47.0207.01 · doi:10.1007/BF01199965
[19] G. H. Hardy, Notes on some points in the integral calculus LX: An inequality between integrals, Messenger Math., 54, 150-156, 1925 · JFM 51.0192.01
[20] G. H. J. E. G. Hardy Littlewood Pólya, Inequalities, 1988
[21] A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality: About Its History and Some Related Results, Vydavatelsý Servis, Plzen, 2007. · Zbl 1213.42001
[22] E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes, 67, 479-486, 2000 · Zbl 0964.26010 · doi:10.1007/BF02676404
[23] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Math., 219, Longman, Harlow, 1990. · Zbl 0698.26007
[24] J. M. Tölle, Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263, 3195-3223, 2012 · Zbl 1267.46054 · doi:10.1016/j.jfa.2012.08.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.