×

A class of weighted Hardy inequalities and applications to evolution problems. (English) Zbl 1445.35015

Summary: We state the following weighted Hardy inequality: \[ c_{o, \mu }\int_{\mathbb{R}^N}\frac{\varphi^2 }{|x|^2}\, \text{d}\mu \leq \int_{\mathbb{R}^N} |\nabla \varphi |^2 \, \text{d}\mu + K \int_{\mathbb{R}^N}\varphi^2 \, \text{d}\mu \quad \forall \, \varphi \in H_\mu^1, \] in the context of the study of the Kolmogorov operators: \[ Lu=\Delta u+\frac{\nabla \mu }{\mu }\cdot \nabla u, \] perturbed by inverse square potentials and of the related evolution problems. The function \(\mu\) in the drift term is a probability density on \(\mathbb{R}^N\). We prove the optimality of the constant \(c_{o, \mu}\) and state existence and nonexistence results following the Cabré-Martel’s approach [X. Cabré and Y. Martel, C. R. Acad. Sci., Paris, Sér. I, Math. 329, No. 11, 973–978 (1999; Zbl 0940.35105)] extended to Kolmogorov operators.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35K15 Initial value problems for second-order parabolic equations
35K65 Degenerate parabolic equations
35B25 Singular perturbations in context of PDEs
34G10 Linear differential equations in abstract spaces
47D03 Groups and semigroups of linear operators

Citations:

Zbl 0940.35105

References:

[1] Albanese, A.; Lorenzi, L.; Mangino, E., \(L^p\)-uniqueness for elliptic operators with unbounded coefficients in \({\mathbb{R}}^N\), J. Funct. Anal., 256, 1238-1257 (2009) · Zbl 1161.47030 · doi:10.1016/j.jfa.2008.07.022
[2] Aronson, DG, Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa, 22, 607-694 (1968) · Zbl 0182.13802
[3] Baras, P.; Goldstein, JA, The heat equation with a singular potential, Trans. Am. Math. Soc., 284, 121-139 (1984) · Zbl 0556.35063 · doi:10.1090/S0002-9947-1984-0742415-3
[4] Baras, Pierre; Goldstein, Jerome A., Remarks on the Inverse Square Potential in Quantum Mechanics, Differential Equations, Proceedings of the Conference held at The University of Alabama in Birmingham, 31-35 (1984) · Zbl 0566.35035
[5] Berestycki, H.; Esteban, MJ, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differ. Equ., 134, 1, 1-25 (1997) · Zbl 0870.34032 · doi:10.1006/jdeq.1996.3165
[6] Besov, O.V.: On the denseness of compactly supported functions in a weighted Sobolev space. Trudy Mat. Inst. Steklov. 161, 29-47 (1983). English transl. in Proc. Mat. Inst. Steklov 161 (1984) · Zbl 0541.46026
[7] Bogachev, VI, Differentiable Measures and the Malliavin Calculus. Mathematical Surveys and Monographs 164 (2010), Providence: American Mathematical Society, Providence · Zbl 1247.28001
[8] Cabré, X.; Martel, Y., Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris, 329, 11, 973-978 (1999) · Zbl 0940.35105 · doi:10.1016/S0764-4442(00)88588-2
[9] Canale, A., Gregorio, F., Rhandi, A., Tacelli, C.: Weighted Hardy’s inequalities and Kolmogorov-type operators. Appl. Anal., pp. 1-19 (2017) · Zbl 1412.35160
[10] Canale, A.; Mininni, RM; Rhandi, A., Analytic approach to solve a degenerate parabolic PDE for the Heston model, Math. Meth. Appl. Sci., 40, 4982-4992 (2017) · Zbl 1370.35184
[11] Canale, A.; Pappalardo, F., Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials, J. Math. Anal. Appl., 463, 895-909 (2018) · Zbl 1387.35015 · doi:10.1016/j.jmaa.2018.03.059
[12] Canale, A., Pappalardo, F., Tarantino, C.: Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials, arXiv:1908.01971v1, 6 Aug (2019) · Zbl 1470.35008
[13] Canale, A.; Rhandi, A.; Tacelli, C., Schrödinger type operators with unbounded diffusion and potential terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16, 581-601 (2016) · Zbl 1350.47033
[14] Canale, A.; Rhandi, A.; Tacelli, C., Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms, Z. Anal. Anwend., 36, 377-392 (2016) · Zbl 1386.35138 · doi:10.4171/ZAA/1593
[15] Canale, A.; Tacelli, C., Kernel estimates for a Schrödinger type operator, Riv. Mat. Univ. Parma, 7, 341-350 (2016) · Zbl 1369.35013
[16] Chiadó Piat, V.; Serra Cassano, F., Some remarks about the density of smooth functions in weighted Sobolev spaces, J. Convex Anal., 1, 2, 135-142 (1994) · Zbl 0865.46019
[17] Davies, EB, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics 42 (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0893.47004
[18] Fabes, EB; Kenig, CE; Serapioni, RP, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differ. Equ., 7, 77-116 (1982) · Zbl 0498.35042 · doi:10.1080/03605308208820218
[19] Gel’fand, IM, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk, 14, 87-158 (1959) · Zbl 0096.06602
[20] Goldstein, GR; Goldstein, JA; Rhandi, A., Weighted Hardy’s inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal., 91, 11, 2057-2071 (2012) · Zbl 1255.35127 · doi:10.1080/00036811.2011.587809
[21] Kufner, A., Weighted Sobolev spaces, Texte zur Mathematik 31 (1980), Stuttgart-Leipzig-Wiesbaden: Teubner, Stuttgart-Leipzig-Wiesbaden · Zbl 0455.46034
[22] Kufner, A.; Opic, B., How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolinae, 25, 3, 537-554 (1984) · Zbl 0557.46025
[23] Lévy-Leblond, JM, Electron capture by polar molecules, Phys. Rev., 153, 1, 1-4 (1967) · doi:10.1103/PhysRev.153.1
[24] Lorenzi, L.; Bertoldi, M., Analytical Methods for Markov Semigroups, Pure and Applied Mathematics 283 (2006), Boca Raton: CRC Press, Boca Raton
[25] Tölle, JM, Uniqueness of weighted Sobolev spaces with weakly differentiable weights, J. Funct. Anal., 263, 3195-3223 (2012) · Zbl 1267.46054 · doi:10.1016/j.jfa.2012.08.002
[26] Zhikov, V. V., Weighted Sobolev spaces, Sbornik: Mathematics, 189, 8, 1139-1170 (1998) · Zbl 0919.46026 · doi:10.1070/SM1998v189n08ABEH000344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.