×

Control of state constrained nonlinear systems with unknown dead-zone nonlinearity: a unified fuzzy dynamic surface control approach. (English) Zbl 1541.93200

The paper is devoted to investigation of a nonlinear system with state constraints, external disturbance, unknown dead-zone and unknown virtual control coefficient. A new dynamical surface control method has been proposed. This method relaxes the restrictions for the system and allows the upper bound of the ‘disturbance-like’ term. The authors utilize the hyperbolic tangent and adaptive laws to design the controller to increase accuracy and robustness. Through the application of adaptive backstepping methods, an adaptive fuzzy dynamic control strategy is composed. Common constructions are illustrated with two examples showing the effectiveness of the suggested technique.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Wang, C.; Lin, Y., Multivariable adaptive backstepping control: a norm estimation approach, IEEE Trans. Autom. Control, 57, 4, 989-995 (2012) · Zbl 1369.93317
[2] Su, Q.; Dong, F.; Shen, X., Improved adaptive backstepping sliding mode control of static var compensator, Energies, 11, 10, 2750 (2018)
[3] Yue, F.; Li, X., Robust adaptive integral backstepping control for opto-electronic tracking system based on modified lugre friction model, ISA Trans., 80, 312-321 (2018)
[4] Furuhashi, T.; Yamamoto, H.; Peters, J. F.; Pedrycz, W., Fuzzy control stability analysis using a generalized fuzzy Petri net model, J. Adv. Comput. Intell., 3, 2, 99-105 (1999)
[5] Preitl, Z.; Precup, R.-E.; Tar, J. K.; Takács, M., Use of multi-parametric quadratic programming in fuzzy control systems, Acta Polytech. Hung., 3, 3, 29-43 (2006)
[6] Pozna, C.; Precup, R.-E.; Horvath, E.; Petriu, E. M., Hybrid particle filter-particle swarm optimization algorithm and application to fuzzy controlled servo systems, IEEE Trans. Fuzzy Syst., 30, 10, 4286-4297 (2022)
[7] Pedrycz, W.; Vukovich, G., Granular computing in the development of fuzzy controllers, Int. J. Intell. Syst., 14, 4, 419-447 (1999) · Zbl 0962.93056
[8] Precup, R.-E.; Preitl, S., Popov-type stability analysis method for fuzzy control systems, (Proceedings of the Fifth European Congress on Intelligent Technologies and Soft Computing. Proceedings of the Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, vol. 2 (1997)), 1306-1310
[9] Ucgun, H.; Okten, I.; Yuzgec, U.; Kesler, M., Test platform and graphical user interface design for vertical take-off and landing drones, Sci. Technol. (ROMJIST), 25, 3-4, 350-367 (2022)
[10] Chen, B.; Liu, X.; Liu, K.; Lin, C., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45, 6, 1530-1535 (2009) · Zbl 1166.93341
[11] Li, Y.; Ren, C.; Tong, S., Adaptive fuzzy backstepping output feedback control for a class of MIMO time-delay nonlinear systems based on high-gain observer, Nonlinear Dyn., 67, 2, 1175-1191 (2011) · Zbl 1243.93062
[12] Sun, Y.; Zhang, L., Fixed-time adaptive fuzzy control for uncertain strict feedback switched systems, Inf. Sci., 546, 742-752 (2021) · Zbl 1478.93606
[13] Zhang, T.; Deng, F.; Sun, Y.; Shi, P., Fault estimation and fault-tolerant control for linear discrete time-varying stochastic systems, Sci. China Inf. Sci., 60, 12 (2021)
[14] Li, H.; Wu, Y.; Chen, M.; Lu, R., Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems, IEEE Trans. Neural Netw. Learn. Syst. (2021)
[15] Swaroop, D.; Hedrick, J. K.; Yip, P. P.; Gerdes, J. C., Dynamic surface control for a class of nonlinear systems, IEEE Trans. Autom. Control, 45, 10, 1893-1899 (2002) · Zbl 0991.93041
[16] Tee, K. P.; Ge, S. S.; Tay, E. H., Barrier Lyapunov functions for the control of output-constrained nonlinear systems, Automatica, 45, 4, 918-927 (2009) · Zbl 1162.93346
[17] Yu, J.; Zhao, L.; Yu, H.; Lin, C., Barrier Lyapunov functions-based command filtered output feedback control for full-state constrained nonlinear systems, Automatica, 105, 71-79 (2019) · Zbl 1429.93395
[18] Liu, M.; Zhang, W., Adaptive fixed-time fuzzy control for output constrained nonlinear systems with unknown virtual control coefficients based on event-triggered mechanism, Int. J. Adapt. Control Signal Process., 36, 10, 2496-2518 (2022) · Zbl 07842355
[19] Zhao, W.; Liu, Y.; Liu, L., Observer-based adaptive fuzzy tracking control using integral barrier Lyapunov functionals for a nonlinear system with full state constraints, IEEE/CAA J. Autom. Sin., 8, 3, 617-627 (2021)
[20] Wu, J.; Su, B.; Li, J.; Zhang, X.; Li, X.; Chen, W., Adaptive fuzzy control for full states constrained systems with nonstrict-feedback form and unknown nonlinear dead zone, Inf. Sci., 376, 233-247 (2017) · Zbl 1429.93208
[21] Su, X.; Chen, C. L.P.; Liu, Z., Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults, Inf. Sci., 581, 553-566 (2021) · Zbl 07791395
[22] Tang, Z.; Ge, S. S.; Tee, K. P.; He, W., Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints, IEEE Trans. Syst. Man Cybern. Syst., 46, 12, 1618-1629 (2016)
[23] Zhao, K.; Song, Y., Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems, IEEE Trans. Autom. Control, 64, 3, 1265-1272 (2018) · Zbl 1482.93260
[24] Zhang, T.; Xia, M.; Yi, Y., Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics, Automatica, 81, 232-239 (2017) · Zbl 1372.93125
[25] Wang, X.; Wu, Q.; Yin, X., Command filter based adaptive control of asymmetric output-constrained switched stochastic nonlinear systems, ISA Trans., 91, 114-124 (2019)
[26] Liu, M.; Zhang, W.; Ma, L., Finite-time adaptive fuzzy control for a class of output constrained nonlinear systems with dead-zone, Int. J. Adapt. Control Signal Process., 36, 1, 69-87 (2021) · Zbl 07841273
[27] Li, A.; Liu, M.; Cao, X.; Liu, R., Adaptive quantized sliding mode attitude tracking control for flexible spacecraft with input dead-zone via Takagi-Sugeno fuzzy approach, Inf. Sci., 587, 746-773 (2022) · Zbl 1534.93226
[28] Ni, J.; Shi, P., Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone, IEEE Trans. Syst. Man Cybern. Syst., 51, 12, 7903-7918 (2021)
[29] Wang, N.; Wang, Y.; Park, J. H.; Lv, M.; Zhang, F., Fuzzy adaptive finite-time consensus tracking control of high-order nonlinear multi-agent networks with dead zone, IEEE Trans. Syst. Man Cybern. Syst., 106, 4, 3363-3378 (2021)
[30] Su, X.; Liu, Z.; Lai, G.; Chen, C. L.P.; Chen, C., Direct adaptive compensation for actuator failures and dead-zone constraints in tracking control of uncertain nonlinear systems, Inf. Sci., 417, 328-343 (2017) · Zbl 1447.93181
[31] Hua, J.; Li, Y.; Zhang, K.; Li, P., Observer-based adaptive fuzzy control of a class of nonlinear systems with unknown symmetric nonlinear dead zone input, Appl. Math. Model., 40, 7-8, 4370-4379 (2016) · Zbl 1459.93088
[32] Zong, G.; Wang, Y.; Karimi, H. R.; Li Shi, K., Observer-based adaptive neural tracking control for a class of nonlinear systems with prescribed performance and input dead-zone constraints, Neural Netw., 147, 126-135, 126-135 (2022) · Zbl 1525.93211
[33] Jiang, X.; Zhao, D., Event-triggered fault detection for nonlinear discrete-time switched stochastic systems: A convex function method, Sci. China Inf. Sci., 64, 10 (2021)
[34] Yang, W.; Pan, Y.; Liang, H., Event-triggered adaptive fixed-time nn control for constrained nonstrict-feedback nonlinear systems with prescribed performance, Neurocomputing, 422, 332-344 (2021)
[35] Tong, S.; Sui, S.; Li, Y., Fuzzy adaptive output feedback control of mimo nonlinear systems with partial tracking errors constrained, IEEE Trans. Fuzzy Syst., 23, 4, 729-742 (2014)
[36] Sun, Z.; Peng, Y.; Wen, C.; Chen, C.-C., Fast finite-time adaptive stabilization of high-order uncertain nonlinear system with an asymmetric output constraint, Automatica, 121, Article 109170 pp. (2020) · Zbl 1448.93287
[37] Zhou, J.; Zhang, C.; Wen, C., Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity, IEEE Trans. Autom. Control, 52, 3, 503-509 (2007) · Zbl 1366.93597
[38] Su, C.; Stepanenko, Y.; Svoboda, J.; Leung, T.-P., Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis, IEEE Trans. Autom. Control, 45, 12, 2427-2432 (2000) · Zbl 0990.93118
[39] Cao, Y.; Wen, C.; Song, Y., A unified event-triggered control approach for uncertain pure-feedback systems with or without state constraints, IEEE Trans. Cybern., 51, 3, 1262-1271 (2019)
[40] Wang, Y.; Wu, H., Adaptive robust backstepping control for a class of uncertain dynamical systems using neural networks, Nonlinear Dyn., 81, 4, 1597-1610 (2015) · Zbl 1348.93234
[41] Li, H.; Zhao, S.; He, W.; Lu, R., Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone, Automatica, 100, 11, 99-107 (2019) · Zbl 1411.93102
[42] Polycarpou, M. M., Stable adaptive neural control scheme for nonlinear systems, IEEE Trans. Autom. Control, 41, 3, 447-451 (1996) · Zbl 0846.93060
[43] Leu, Yih-Guang; Lee, Tsu-Tian; Wang, Wei-Yen, Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems, IEEE Trans. Syst. Man Cybern. B, 29, 5, 583-591 (1999)
[44] Tong, S.; Li, Y.; Sui, S., Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 24, 6, 1441-1454 (2016)
[45] Zhang, F.; Hua, J.; Li, Y., Indirect adaptive fuzzy control of SISO nonlinear systems with input-output nonlinear relationship, IEEE Trans. Fuzzy Syst., 26, 5, 2699-2708 (2018)
[46] Li, Y.; Tong, S., Command-filtered-based fuzzy adaptive control design for mimo-switched nonstrict-feedback nonlinear systems, IEEE Trans. Fuzzy Syst., 25, 3, 668-681 (2016)
[47] Huang, Y.; Wang, J.; Wang, F.; He, B., Event-triggered adaptive finite-time tracking control for full state constraints nonlinear systems with parameter uncertainties and given transient performance, ISA Trans., 108, 131-143 (2021)
[48] He, W.; Ge, S. S.; Li, Y.; Chew, E.; Ng, Y. S., Impedance control of a rehabilitation robot for interactive training, (International Conference on Social Robotics. International Conference on Social Robotics, Berlin, Heidelberg (2012)), 526-535
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.