×

Analyzing the angular acceleration vector of a moving rigid body. (English) Zbl 1541.70002

The present paper is an alternative authors’ approaches to determine the position, velocity and acceleration in the spatial motion of a rigid body. In the considered method, an expression for the angular acceleration vector involves relations between position vectors, velocity vectors and acceleration, and the vectors of three non-collinear body points. On the base of the relationship between orientation vector, vector of angular velocity, angular acceleration and vector of spatial motion of rigid body, a good result is obtained in symbolic form. Examples are given which demonstrate the idea of the paper.

MSC:

70B10 Kinematics of a rigid body
Full Text: DOI

References:

[1] Euler, L., Nova methodus motum corporum rigidorum determinandi, Novi Commentari Acad Imp Petrop, 20, 208-238 (1775)
[2] Rodrigues, O., Des lois géométriques qui régissent les déplacements d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produir, J Math, 5, 380-440 (1840)
[3] Shuster, MD, A survey of attitude representations, J Astron Sci, 41, 4, 439-517 (1993)
[4] Trindade, MA; Sampaio, R., Uma Revisão sobre a Parametrização de Rotações Finitas na Dinâmica de Corpos Rígidos, J Braz Soc Mech Sci, 222, 2, 341-377 (2000) · doi:10.1590/S0100-73862000000200015
[5] Caparrini, S., The discovery of the vector representation of moments and angular velocity, Arch Hist Exact Sci, 56, 151-181 (2002) · Zbl 1012.01003 · doi:10.1007/s004070200001
[6] Condurache, D., Higher-order relative kinematics of rigid body and multibody systems. A novel approach with real and dual lie algebras, Mech Mach Theory, 176, 1-27 (2022) · doi:10.1016/j.mechmachtheory.2022.104999
[7] Mohamed, MG, Kinematics of rigid bodies in general spatial motion: second-order motion properties, Appl Math Model, 21, 8, 471-479 (1997) · Zbl 1031.70500 · doi:10.1016/S0307-904X(97)00044-9
[8] McGill DJ, King WW (1984) Engineering mechanics: an introduction to dynamics, Brooks/Cole Engineering Division, pp 490-492
[9] Hassani, A.; Khalilpour, SA; Bataleblu, A.; Taghirad, HD, Full dynamic model of 3-UPU translational parallel manipulator for model-based control schemes, Robotica, 40, 8, 2815-2830 (2022) · doi:10.1017/S0263574721001971
[10] Lewkowiciz, R.; Kowaleczko, G., An inverse kinematic model of the human training centrifuge motion simulator, J Theor Appl Mech, 57, 1, 99-113 (2019) · doi:10.15632/jtam-pl.57.1.99
[11] Matuszek, DB; Bilos, LA, Computer image analysis as a method of evaluating the quality of selected fine-grained food mixtures, Sustainability, 13, 3018, 1-14 (2021)
[12] Carlsen, RW; Fawzi, AL; Wan, F.; Kesari, H.; Franck, C., A quatitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis, Brain Multiphys, 2, 100024, 1-14 (2021)
[13] Condurache, D.; Matcovschi, MH, Algebraic computation of the twist of a rigid body through direct measurements, Comput Methods Appl Mech Eng, 190, 5357-5376 (2001) · Zbl 0996.70002 · doi:10.1016/S0045-7825(01)00171-2
[14] Field, P.; Ziwet, A., The accelerations of the points of a rigid body, Am Math Mon, 23, 10, 371-381 (1916) · JFM 46.1186.04 · doi:10.1080/00029890.1916.11998253
[15] Soutas-Little, RW; Inman, DJ, Engineering mechanics: dynamics, 386-387 (1999), USA: Prentice-Hall Inc, USA
[16] Wittenburg, J., Dynamics of multibody systems, 23-26 (2008), Cambridge: Springer, Cambridge · Zbl 1131.70001
[17] Wittenburg, J., Kinematics, 316-317 (2016), UK: Springer, UK · Zbl 1336.70001 · doi:10.1007/978-3-662-48487-6
[18] Angeles, J., Computation of rigid-body angular acceleration from point-acceleration measurements, ASME J Dyn Syst Meas Control, 109, 124-127 (1987) · Zbl 0633.70018 · doi:10.1115/1.3143828
[19] Angeles, J., The angular-acceleration tensor of rigid-body kinematics and its properties, Arch Appl Mech, 69, 204-214 (1999) · Zbl 0942.70005 · doi:10.1007/s004190050214
[20] Angeles, J., Fundamentals of robotic mechanical systems, 362-368 (2014), New York: Springer, New York · Zbl 1279.70001 · doi:10.1007/978-3-319-01851-5
[21] Condurache, D.; Matcovschi, M., Computation of angular velocity and acceleration tensors by direct measurements, Acta Mech, 153, 147-167 (2002) · Zbl 1014.70003 · doi:10.1007/BF01177449
[22] Cervantes-Sánchez, JJ; Rico-Martínez, JM; Pérez-Muñoz, VH, On the angular velocity of a rigid body: matrix and vector representations, Eur J Mech A/Solids, 45, 123-132 (2014) · Zbl 1406.70010 · doi:10.1016/j.euromechsol.2013.11.016
[23] Rico-Martínez, JM; Duffy, J., An application of screw algebra to the acceleration analysis of serial chains, Mech Mach Theory, 31, 4, 445-457 (1996) · doi:10.1016/0094-114X(95)00089-H
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.