×

Enhancing the accuracy and efficiency of two uniformly convergent numerical solvers for singularly perturbed parabolic convection-diffusion-reaction problems with two small parameters. (English) Zbl 1541.65118

Summary: This study is devoted to designing two hybrid computational algorithms to find approximate solutions for a class of singularly perturbed parabolic convection-diffusion-reaction problems with two small parameters. In our approaches, the time discretization is first performed by the well-known Rothe method and Taylor series procedures, which reduce the underlying model problem into a sequence of boundary value problems (BVPs). Hence, a matrix collocation technique based on novel shifted Delannoy functions (SDFs) is employed to solve each BVP at each time step. We show that our proposed hybrid approximate techniques are uniformly convergent in order \(\mathcal{O}(\Delta\tau^s + M^{-\frac{1}{2}})\) for \(s = 1, 2\), where \(\Delta\tau\) is the time step and \(M\) is the number of SDFs used in the approximation. Numerical simulations are performed to clarify the good alignment between numerical and theoretical findings. The computational results are more accurate as compared with those of existing numerical values in the literature.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
41A10 Approximation by polynomials
41A50 Best approximation, Chebyshev systems
35B25 Singular perturbations in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations

References:

[1] D. S. Naidu, Singular perturbations and time scales in control theory and applications: An overview, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 (2002), no. 2, 233-278. · Zbl 1041.93002
[2] S. Polak, C. Den Heiger, W. H. Schilders, and P. Markowich, Semiconductor device modelling from the numerical point of view, Int. J. Numer. Methods Eng. 24 (1987), 763-838. · Zbl 0618.65125
[3] J. J. H. Miller, E. O’riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996. · Zbl 0915.65097
[4] J. I. Ramos, A piecewise-analytical method for singularly perturbed parabolic problems, Appl. Math. Comput. 161 (2005), 501-512. · Zbl 1061.65088
[5] M. El-Gamel, The sinc-Galerkin method for solving singularly perturbed reaction diffusion problem, Electron. Trans. Numer. Anal. 23 (2006), 129-140. · Zbl 1112.65094
[6] E. O’Riordan, M. L. Pickett, and G. I. Shishkin, Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems, Math. Comput. 75 (2006), no. 255, 1135-1154. · Zbl 1098.65091
[7] P. Das and V. Mehrmann, Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters, BIT Numer. Math. 56 (2016), no. 1, 51-76. · Zbl 1341.65031
[8] V. Gupta, M. K. Kadalbajoo, and R. K. Dubey, A parameter-uniform higher-order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Int. J. Comput. Math. 96 (2019), no. 3, 474-499. · Zbl 1499.65390
[9] R. Jiwari, S. Sukhveer, and S. Paramjeet, Local RBF-FD-based mesh-free scheme for singularly perturbed convection-diffusion-reaction models with variable coefficients, J. Math. 2022 (2022), 3119482.
[10] M. K. Kadalbajoo and A. S. Yadaw, Parameter uniform finite element method for two parameter singularly perturbed parabolic reaction-diffusion problems, Int. J. Comput. Methods 9 (2012), no. 4, 1250047. · Zbl 1359.65202
[11] C. Clavero, J. C. Jorge, and F. Lisbona, A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems, J. Comput. Appl. Math. 154 (2003), 415-429. · Zbl 1023.65097
[12] M. K. Kadalbajoo, V. Gupta, and A. Awasthi, A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one dimensional time-dependent linear convection-diffusion problem, J. Comput. Appl. Math. 220 (2008), 271-289. · Zbl 1149.65085
[13] K. Mukherjee and S. Natesan, Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems, Computing 92 (2011), 1-32. · Zbl 1243.65106
[14] M. M. Woldaregay, W. T. Aniley, and G. F. Duressa, Novel numerical scheme for singularly perturbed time delay convection-diffusion equation, Adv. Math. Phys. 2021 (2021), 6641236. · Zbl 1481.65164
[15] G. T. Lubo and G. F. Duressa, Redefined cubic B-spine finite element method for the generalized diffusion equation with delay, Research Math. 9 (2022), no. 1, 2095092.
[16] S. R. Sahu and J. Mohapatra, Parameter uniform numerical methods for singularly perturbed delay differential equation involving two small parameters, Int. J. Appl. Comput. Math. 5 (2019), 129. · Zbl 1436.65091
[17] L. Govindarao and J. Mohapatra, A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput. 36 (2019), no. 2, 420-444.
[18] M. Izadi, Streamline diffusion method for treating coupling equations of hyperbolic scalar conservation laws, Math. Comput. Model. 45 (2007), 201-214. · Zbl 1133.65076
[19] M. Izadi, A posteriori error estimates for the coupling equations of scalar conservation laws, BIT Numer. Math. 49 (2009), no. 4, 697-720. · Zbl 1190.65138
[20] X. Liu and J. Zhang, Supercloseness of linear streamline diffusion finite element method on Bakhvalov-type mesh for singularly perturbed convection-diffusion equation in 1D, Appl. Math. Comput. 430 (2022), 127258. · Zbl 1510.65293
[21] H. G. Roos, Error estimates for linear finite elements on Bakhvalov-type meshes, Appl. Math. 51 (2006), no. 1, 63-72. · Zbl 1164.65486
[22] J. Zhang and Y. Lv, Finite element method for singularly perturbed problems with two parameters on a Bakhvalov-type mesh in 2D, Numer. Algor. 90 (2022), 447-475. · Zbl 1491.65153
[23] N. T. Negero, A parameter-uniform efficient numerical scheme for singularly perturbed time-delay parabolic problems with two small parameters, Partial Differ. Equ. Appl. Math. 7, (2023), 100518.
[24] H. G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996. · Zbl 0844.65075
[25] M. Izadi, Applications of the Newton-Raphson method in a SDFEM for inviscid Burgers equation, Comput. Methods Differ. Equ. 8 (2020), no. 4, 708-732. · Zbl 1474.76038
[26] L. Govindarao, J. Mohapatra, and A. Das, A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics, J. Appl. Math. Comput. 63 (2020), no. 1, 171-95. · Zbl 1475.65069
[27] M. Izadi, Ş. Yüzbaşı, and K. J. Ansari, Application of Vieta-Lucas series to solve a class of multi-pantograph delay differential equations with singularity, Symmetry 13 (2021), no. 12, 2370.
[28] S. Ahmed, S. Jahan, K. J. Ansari, K. Shah, and T. Abdeljawad, Wavelets collocation method for singularly perturbed differential-difference equations arising in control system, Results Appl. Math. 21 (2024), 100415. · Zbl 1535.65107
[29] M. Izadi and H. M. Srivastava, An optimized second-order numerical scheme applied to the non-linear Fisheras reaction-diffusion equation, J. Interdiscip. Math. 25 (2022), no. 2, 471-492.
[30] Ş. Yüzbaşı, and M. Karaçayır, An approximation technique for solutions of singularly perturbed one-dimensional convection-diffusion problem, Int. J. Numer. Model.: Electron. Netw. Devices Fields 33 (2020), no. 1, e2686.
[31] F. Usta, M. Akyiğit, F. Say, and K.J. Ansari, Bernstein operator method for approximate solution of singularly perturbed Volterra integral equations, J. Math. Anal. Appl. 507 (2022), no. 2, 125828. · Zbl 1496.65241
[32] M. Izadi, Two-stage explicit schemes based numerical approximations of convection-diffusion equations, Int. J. Comput. Sci. Math. 16 (2022), no. 3, 208-224.
[33] H. Delannoy, Emploi de ĺechiquier pour la resolution de certains problÂţemes de probabilites, Assoc. Franc. Bordeaux 24 (1895), 70-90. · JFM 27.0180.05
[34] Z. Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57 (2014), 1375-1400. · Zbl 1339.11026
[35] Ö. K. Kürkcü, A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial, MANAS J. Eng. 9 (2021), no. 1, 82-96.
[36] E. D. Rainville, Special Functions, Macmillan, New York, 1960. · Zbl 0092.06503
[37] E. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler randwertaufgaben, Math. Ann. 102 (1930), no. 1, 650-670. · JFM 56.1076.02
[38] H. M. Srivastava and M. Izadi, The Rothe-Newton approach to simulate the variable coefficient convection-diffusion equations, J. Mahani Math. Res. 11 (2022), no. 2, 141-157. · Zbl 1513.65334
[39] M. Izadi and P. Roul, Spectral semi-discretization algorithm for a class of nonlinear parabolic PDEs with applications, Appl. Math. Comput. 429 (2022), 127226. · Zbl 1510.65260
[40] M. Izadi and M. E. Samei, Time accurate solution to Benjamin-Bona-Mahony Burgers equation via Taylor-Boubaker series scheme, Bound. Value Probl. 2022 (2022), 17. · Zbl 1490.65221
[41] M. Izadi, A combined approximation method for nonlinear foam drainage equation, Sci. Iran. 29 (2022), no. 1, 70-78.
[42] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Reprint of the 1967 original, Springer-Verlag, New York, NY, 1984. · Zbl 0549.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.