×

A posteriori error estimates for the coupling equations of scalar conservation laws. (English) Zbl 1190.65138

The paper deals with the following coupling of two conservation laws in one dimension:
\[ u_t+f_R(u)_x-(\varepsilon u)_{xx}=0, \text{} x>0, \; t>0, \]
\[ u_t+f_L(u)_x-(\varepsilon u)_{xx}=0, \text{} x<0, \; t>0, \]
\[ u(x,0)=0, \text{} x \in \mathbb{R}, \]
where \(u:(x,t)\in \mathbb{R} \times \mathbb{R}_+ \to u(x,t)\in \mathbb{R}\) satisfies a suitable “continuity” condition
\[ u(x,t)=u^b(t), \quad t \geq 0 \]
at the interface \(x=0,\) to be compatible with initial condition \(u_0\), \(\varepsilon=\varepsilon(x,t)\) is a positive small viscosity, \(u_0:\; \mathbb{R}\to \mathbb{R}\) is a given function and \(f_\alpha:\; \mathbb{R} \to \mathbb{R}, \; \alpha=L,R,\) denote two smooth functions.
Some a posteriori \(L_2(L_2)\) and \(L_{\infty}(H^{-1})\) residual based error estimates for a finite element method are proposed and a numerical example is given.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

References:

[1] Asadzadeh, M.: A posteriori error estimates for the Fokker-Planck and Fermi Pencil Beam equations. Math. Models Methods Appl. Sci. 10, 737–769 (2000) · Zbl 1012.82008
[2] Beilina, L., Johnson, C.: A posteriori error estimation in computational inverse scattering. Math. Models Methods Appl. Sci. 15, 23–36 (2005) · Zbl 1160.76363 · doi:10.1142/S0218202505003885
[3] Brezzi, F., Canuto, C., Russo, A.: A self-adaptive formulation for the Euler/Navier Stokes coupling. Comput. Methods Appl. Mech. Eng. 73, 317–330 (1989) · Zbl 0688.76024 · doi:10.1016/0045-7825(89)90071-6
[4] Burman, E.: Adaptive finite element methods for compressible flow. Ph.D. Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg (1998) · Zbl 0973.76040
[5] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1987)
[6] Eriksson, K., Johnson, C.: An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361–383 (1988) · Zbl 0644.65080 · doi:10.1090/S0025-5718-1988-0929542-X
[7] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991) · Zbl 0732.65093 · doi:10.1137/0728003
[8] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems II: optimal error estimates in L L 2 and L L SIAM J. Numer. Anal. 32, 706–740 (1995) · Zbl 0830.65094 · doi:10.1137/0732033
[9] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: non-linear problems. SIAM J. Numer. Anal. 32, 777–788 (1995) · Zbl 0835.65116
[10] Godlewski, E., Raviart, P.-A.: The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numer. Math. 97, 81–130 (2004) · Zbl 1063.65080 · doi:10.1007/s00211-002-0438-5
[11] Houston, P., Süli, E.: Adaptive Lagrange-Galerkin methods for unsteady convection-dominated diffusion problems. Math. Comput. 70, 77–106 (2001) · Zbl 0957.65085
[12] Izadi, M.: Streamline diffusion method for treating the coupling equations of two hyperbolic conservation laws. Math. Comput. Model. 45, 201–214 (2007) · Zbl 1133.65076 · doi:10.1016/j.mcm.2006.05.004
[13] Johnson, C., Szepessy, A.: Adaptive finite element methods for conservation laws based on a posteriori error estimates. Commun. Pure Appl. Math. 48, 199–234 (1995) · Zbl 0826.65088 · doi:10.1002/cpa.3160480302
[14] Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput. 54, 107–129 (1990) · Zbl 0685.65086 · doi:10.1090/S0025-5718-1990-0995210-0
[15] Sandboge, R.: Adaptive finite element methods for reactive flow problems. Ph.D. Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg (1996) · Zbl 0944.76038
[16] Süli, E., Houston, P.: Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity. In: Duff, I., Watson, G.A. (eds.) State of the Art in Numerical Analysis, pp. 441–471. Oxford University Press, Oxford (1997) · Zbl 0886.65104
[17] Szepessy, A.: Convergence of streamline diffusion finite element method for conservation law. Ph.D. Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg (1989) · Zbl 0679.65072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.