×

Games associated with products of eigenvalues of the Hessian. (English) Zbl 1541.35512

Summary: We introduce games associated with second-order partial differential equations given by arbitrary products of eigenvalues of the Hessian. We prove that, as a parameter that controls the step length goes to zero, the value functions of the games converge uniformly to a viscosity solution of the partial differential equation. The classical Monge-Ampère equation is an important example under consideration.

MSC:

35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
91A05 2-person games
35J96 Monge-Ampère equations
35D40 Viscosity solutions to PDEs
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] A. Arroyo, P. Blanc, M. Parviainen, Hölder regularity for stochastic processes with bounded and measurable increments, Ann. Inst. H. Poincare Anal. Non Lineaire, in press. https://doi.org/10.4171/aihpc/41
[2] I. Birindelli, G. Galise, H. Ishi, Existence through convexity for the truncated Laplacians, Math. Ann., 379 (2021), 909-950. https://doi.org/10.1007/s00208-019-01953-x · Zbl 1466.35203 · doi:10.1007/s00208-019-01953-x
[3] P. Blanc, F. Charro, J. D. Rossi, J. J. Manfredi, A nonlinear mean value property for the Monge-Ampère operator, J. Convex Anal., 28 (2021), 353-386. · Zbl 1466.35235
[4] P. Blanc, C. Esteve, J. D. Rossi, The evolution problem associated with eigenvalues of the Hessian, J. London Math. Soc., 102 (2020), 1293-1317. https://doi.org/10.1112/jlms.12363 · Zbl 1462.35136 · doi:10.1112/jlms.12363
[5] P. Blanc, J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pure. Appl., 127 (2019), 192-215. https://doi.org/10.1016/j.matpur.2018.08.007 · Zbl 1423.35118 · doi:10.1016/j.matpur.2018.08.007
[6] P. Blanc, J. D. Rossi, Game theory and partial differential equations, Berlin, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110621792 · Zbl 1430.91001
[7] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, Ⅰ: Monge-Ampère equations, Commun. Pure Appl. Math., 37 (1984), 369-402. https://doi.org/10.1002/cpa.3160370306 · Zbl 0598.35047 · doi:10.1002/cpa.3160370306
[8] M. Cirant, K. R. Payne, On viscosity solutions to the Dirichlet problem for elliptic branches of inhomogeneous fully nonlinear equations, Publ. Mat., 61 (2017), 529-575. https://doi.org/10.5565/PUBLMAT6121708 · Zbl 1380.35087 · doi:10.5565/PUBLMAT6121708
[9] M. G. Crandall, H. Ishii, P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. https://doi.org/10.1090/S0273-0979-1992-00266-5 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[10] F. Del Teso, J. J. Manfredi, M. Parviainen, Convergence of dynamic programming principles for the \(p\)-Laplacian, Adv. Calc. Var., 15 (2022), 191-212. https://doi.org/10.1515/acv-2019-0043 · Zbl 1486.35235 · doi:10.1515/acv-2019-0043
[11] A. Figalli, The Monge-Ampère equation and its applications, Zürich: European Mathematical Society, 2017. https://doi.org/10.4171/170 · Zbl 1435.35003
[12] D. A. Gomes, J. Saude, Mean field games models - A brief survey, Dyn. Games Appl., 4 (2014), 110-154. https://doi.org/10.1007/s13235-013-0099-2 · Zbl 1314.91048 · doi:10.1007/s13235-013-0099-2
[13] C. Gutiérrez, The Monge-Ampère equation, Boston, MA: Birkhäuser Boston, Inc., 2001. · Zbl 0989.35052
[14] F. R. Harvey, H. B. Lawson, Dirichlet duality and the nonlinear Dirichlet problem, Commun. Pure Appl. Math., 62 (2009), 396-443. https://doi.org/10.1002/cpa.20265 · Zbl 1173.35062 · doi:10.1002/cpa.20265
[15] M. Lewicka, A course on tug-of-war games with random noise, Cham: Springer 2020. https://doi.org/10.1007/978-3-030-46209-3 · Zbl 1452.91002
[16] M. Lewicka, J. J. Manfredi, D. Ricciotti, Random walks and random tug of war in the Heisenberg group, Math. Ann., 377 (2020), 797-846. https://doi.org/10.1007/s00208-019-01853-0 · Zbl 1467.60032 · doi:10.1007/s00208-019-01853-0
[17] Q. Liu, A. Schikorra, General existence of solutions to dynamic programming principle, Commun. Pure Appl. Anal., 14 (2015), 167-184. https://doi.org/10.3934/cpaa.2015.14.167 · Zbl 1326.35395 · doi:10.3934/cpaa.2015.14.167
[18] H. Luiro, M. Parviainen, E. Saksman, Harnack’s inequality for p-harmonic functions via stochastic games, Commun. Part. Diff. Eq., 38 (2013), 1985-2003. https://doi.org/10.1080/03605302.2013.814068 · Zbl 1287.35044 · doi:10.1080/03605302.2013.814068
[19] J. J. Manfredi, M. Parviainen, J. D. Rossi, An asymptotic mean value characterization for \(p\)-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889. https://doi.org/10.1090/S0002-9939-09-10183-1 · Zbl 1187.35115 · doi:10.1090/S0002-9939-09-10183-1
[20] J. J. Manfredi, M. Parviainen, J. D. Rossi, Dynamic programming principle for tug-of-war games with noise, ESAIM: COCV, 18 (2012), 81-90. https://doi.org/10.1051/cocv/2010046 · Zbl 1233.91042 · doi:10.1051/cocv/2010046
[21] J. J. Manfredi, M. Parviainen, J. D. Rossi, On the definition and properties of \(p\)-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 215-241. https://doi.org/10.2422/2036-2145.201005_003 · Zbl 1252.91014 · doi:10.2422/2036-2145.201005_003
[22] A. M. Oberman, L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc., 363 (2011), 5871-5886. https://doi.org/10.1090/S0002-9947-2011-05240-2 · Zbl 1244.35056 · doi:10.1090/S0002-9947-2011-05240-2
[23] M. Parviainen, E. Ruosteenoja, Local regularity for time-dependent tug-of-war games with varying probabilities, J. Differ. Equations, 261 (2016), 1357-1398. https://doi.org/10.1016/j.jde.2016.04.001 · Zbl 1338.35213 · doi:10.1016/j.jde.2016.04.001
[24] Y. Peres, O. Schramm, S. Sheffield, D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210. https://doi.org/10.1090/S0894-0347-08-00606-1 · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[25] Y. Peres, S. Sheffield, Tug-of-war with noise: a game theoretic view of the \(p\)-Laplacian, Duke Math. J., 145 (2008), 91-120. https://doi.org/10.1215/00127094-2008-048 · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[26] A. V. Pogorelov, Monge-Ampère equations of elliptic type, Noordhoff, 1964. · Zbl 0133.04902
[27] E. Ruosteenoja, Local regularity results for value functions of tug-of-war with noise and running payoff, Adv. Calc. Var., 9 (2016), 1-17. https://doi.org/10.1515/acv-2014-0021 · Zbl 1331.35069 · doi:10.1515/acv-2014-0021
[28] H. V. Tran, Hamilton-Jacobi equations-theory and applications, American Mathematical Society, 2021. https://doi.org/10.1090/gsm/213 · Zbl 1540.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.