×

Convergence of dynamic programming principles for the \(p\)-Laplacian. (English) Zbl 1486.35235

Summary: We provide a unified strategy to show that solutions of dynamic programming principles associated to the \(p\)-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously known cases for continuous and discrete dynamic programming principles, provides new results, and gives a convergence proof free of probability arguments.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations

References:

[1] A. Arroyo, J. Heino and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p(x)-Laplacian, Commun. Pure Appl. Anal. 16 (2017), no. 3, 915-944. · Zbl 1359.35062
[2] G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems, Comm. Partial Differential Equations 20 (1995), no. 1-2, 129-178. · Zbl 0826.35038
[3] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 557-579. · Zbl 0629.49017
[4] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim. 26 (1988), no. 5, 1133-1148. · Zbl 0674.49027
[5] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), no. 3, 271-283. · Zbl 0729.65077
[6] L. Codenotti, M. Lewicka and J. Manfredi, Discrete approximations to the double-obstacle problem and optimal stopping of tug-of-war games, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7387-7403. · Zbl 1380.35113
[7] H. Hartikainen, A dynamic programming principle with continuous solutions related to the p-Laplacian, 1\Zbl 1374.35020
[8] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, 2006. · Zbl 1115.31001
[9] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 16 (1989), no. 1, 105-135. · Zbl 0701.35052
[10] E. R. Jakobsen, Encyclopedia of Quantitative Finance. Chapter Monotone Schemes, John Wiley & Sons, New York, 2010.
[11] P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), no. 3, 699-717. · Zbl 0997.35022
[12] B. Kawohl, J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl. (9) 97 (2012), no. 2, 173-188. · Zbl 1236.35083
[13] E. Le Gruyer and J. C. Archer, Harmonious extensions, SIAM J. Math. Anal. 29 (1998), no. 1, 279-292. · Zbl 0915.46002
[14] M. Lewicka and J. J. Manfredi, The obstacle problem for the p-laplacian via optimal stopping of tug-of-war games, Probab. Theory Related Fields 167 (2017), no. 1-2, 349-378. · Zbl 1358.60058
[15] M. Lewicka, J. J. Manfredi and D. Ricciotti, Random walks and random tug of war in the Heisenberg group, Math. Ann. (2019).
[16] Q. Liu and A. Schikorra, General existence of solutions to dynamic programming equations, Commun. Pure Appl. Anal. 14 (2015), no. 1, 167-184. · Zbl 1326.35395
[17] H. Luiro and M. Parviainen, Regularity for nonlinear stochastic games, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 6, 1435-1456. · Zbl 1398.91058
[18] H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions, Differential Integral Equations 27 (2014), no. 3-4, 201-216. · Zbl 1324.49029
[19] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881-889. · Zbl 1187.35115
[20] J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of p-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 2, 215-241. · Zbl 1252.91014
[21] A. M. Oberman, A convergent difference scheme for the infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions, Math. Comp. 74 (2005), no. 251, 1217-1230. · Zbl 1094.65110
[22] A. M. Oberman, Finite difference methods for the infinity Laplace and p-Laplace equations, J. Comput. Appl. Math. 254 (2013), 65-80. · Zbl 1290.65098
[23] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167-210. · Zbl 1206.91002
[24] Y. Peres and S. Sheffield, Tug-of-war with noise: A game-theoretic view of the p-Laplacian, Duke Math. J. 145 (2008), no. 1, 91-120. · Zbl 1206.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.