×

Multiple solutions for critical nonlocal elliptic problems with magnetic field. (English) Zbl 1541.35221

Summary: In this paper, we consider the existence of multiple solutions of the following critical nonlocal elliptic equations with magnetic field: \[ \begin{cases} (-i\nabla-A(x))^2u = \lambda |u|^{p-2}u+\bigg(\int_{\Omega}\frac{|u(y)|^{2^*_\alpha}}{|x-y|^{\alpha}}dy\bigg)|u|^{2^*_\alpha-2}u\quad\text{ in}\quad \Omega,\\ u = 0\quad \partial\Omega, \end{cases}\tag{1} \] where \(i\) is imaginary unit, \( N\geq4\), \(2^*_\alpha = \frac{2N-\alpha}{N-2}\) with \(0<\alpha<4\), \(\lambda>0\) and \(2\leq p<2^* = \frac{2N}{N-2} \). Suppose the magnetic vector potential \(A(x) = (A_1(x), A_2(x)\dots, A_N(x))\) is real and local Hölder continuous. We show by the Ljusternik-Schnirelman theory that (1) has at least \(cat_\Omega(\Omega)\) nontrivial solutions for \(\lambda\) small.

MSC:

35J61 Semilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] C. O. G. M. Alves Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 82, 389-405, 2014 · Zbl 1304.35630 · doi:10.1007/s00032-014-0225-7
[2] C. O. G. M. M. Alves Figueiredo Yang, Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field, Asymptotic Analysis, 96, 135-159, 2016 · Zbl 1339.35278 · doi:10.3233/ASY-151337
[3] G. A. Arioli Szulkin, A Semilinear Schrödinger equation in the presence of a magnetic field, Arch. Rational Mech. Anal., 170, 277-295, 2003 · Zbl 1051.35082 · doi:10.1007/s00205-003-0274-5
[4] V. G. Benci Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99, 283-300, 1987 · Zbl 0635.35036 · doi:10.1007/BF00282048
[5] H. G. G. G. A. Bueno Mamami Pereira, Ground state of a magnetic nonlinear Choquard equation, Nonlinear Anal., 181, 189-199, 2019 · Zbl 1420.35344 · doi:10.1016/j.na.2018.11.012
[6] S. M. S. Cingolani Clapp Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63, 233-248, 2012 · Zbl 1247.35141 · doi:10.1007/s00033-011-0166-8
[7] S. S. M. Cingolani Secchi Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 140, 973-1009, 2010 · Zbl 1215.35146 · doi:10.1017/S0308210509000584
[8] M. J. Esteban and P.-L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, PDE and Calculus of Variations, Vol. I, Progr. Nonlinear Differential Equations Appl. 1, Birkhäuser Boston, MA, 1989, 401-449. · Zbl 0702.35067
[9] F. M. Gao Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61, 1219-1242, 2018 · Zbl 1397.35087 · doi:10.1007/s11425-016-9067-5
[10] F. M. Gao Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448, 1006-1041, 2017 · Zbl 1357.35106 · doi:10.1016/j.jmaa.2016.11.015
[11] M. Ghimenti and D. Pagliardini, Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains, Calc. Var. Partial Differ. Equ., 58 (2019), Paper No. 167, 21 pp. · Zbl 1425.35062
[12] D. Goel, The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent, Top. Methods in Nonlinear Anal., 54, 751-771, 2019 · Zbl 1441.49008 · doi:10.12775/tmna.2019.068
[13] C. V. D. Ji Rădulescu, Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well, J. Differential Equations, 306, 251-279, 2022 · Zbl 1480.35190 · doi:10.1016/j.jde.2021.10.030
[14] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math., 57, 93-105, 1976/77 · Zbl 0369.35022 · doi:10.1002/sapm197757293
[15] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, AMS, 1997.
[16] P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4, 1063-1072, 1980 · Zbl 0453.47042 · doi:10.1016/0362-546X(80)90016-4
[17] F. Liu, J. Yang and X. Yu, Positive solutions to multi-critical elliptic problems, to appear, Ann. di Mate. Pura ed Appl., 2022.
[18] D. Lü, Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations, Commun. Pure Appl. Anal., 15, 1781-1795, 2016 · Zbl 1351.35185 · doi:10.3934/cpaa.2016014
[19] O. H. Miyagaki, On a class of semilinear elliptic problems in \(R^N\) with critical growth, Nonlinear Anal., 29, 773-781, 1997 · Zbl 0877.35043 · doi:10.1016/S0362-546X(96)00087-9
[20] V. J. Moroz Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184, 2013 · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[21] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Comm. Contem. Math., 17 (2015), 1550005, 12 pp. · Zbl 1326.35109
[22] T. K. Mukherjee Sreenadh, On concentration of least energy solutions for magnetic critical Choquard equations, J. Math. Anal. Appl., 464, 402-420, 2018 · Zbl 1392.35290 · doi:10.1016/j.jmaa.2018.04.010
[23] D. Salazar, Vortex-type solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 66, 663-675, 2015 · Zbl 1320.35330 · doi:10.1007/s00033-014-0412-y
[24] Z. Y. Tang Wang, Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth, Science China Mathematics, 58, 2317-2328, 2015 · Zbl 1332.35119 · doi:10.1007/s11425-015-4987-3
[25] M. Willem, Minimax Thorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston MA, 1996. · Zbl 0856.49001
[26] Z. J. Xu Yang, Multiple solutions to multi-critical Schrödinger equations, Advanced Nonlinear Studies, 22, 273-288, 2022 · Zbl 1497.35131 · doi:10.1515/ans-2022-0014
[27] M. Y. Yang Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 403, 680-694, 2013 · Zbl 1294.35149 · doi:10.1016/j.jmaa.2013.02.062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.