×

Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth. (English) Zbl 1332.35119

Summary: We study a class of semilinear Schrödinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter \(\lambda\) and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter \(\lambda\) is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter \(\lambda\) becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the Schrödinger equation which involves critical growth but does not involve electromagnetic fields.

MSC:

35J61 Semilinear elliptic equations
35J20 Variational methods for second-order elliptic equations
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI

References:

[1] Ambrosetti A, Badiale A, Cingolani S. Semiclassical states of nonlinear Schrödinger equations. Arch Ration Mech Anal, 1997, 140: 285-300 · Zbl 0896.35042 · doi:10.1007/s002050050067
[2] Ambrosetti A, Malchiodi A, Secchi S. Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch Ration Mech Anal, 2001, 159: 253-271 · Zbl 1040.35107 · doi:10.1007/s002050100152
[3] Arioli G, Szulkin A. A semilinear Schrödinger equation in the presence of a magnetic field. Z Angew Math Phy, 2000, 51: 366-384 · Zbl 0972.35145 · doi:10.1007/PL00001511
[4] Barile S. Multiple semiclassical states for singular magnetic nonlinear Schrödinger equations. Electron J Diff Equ, 2008, 37: 1-18 · Zbl 1172.35369
[5] Barile S. A multiplicity result for singular NLS equations with magnetic potentials. Nonlinear Anal, 2008, 68: 3525-3540 · Zbl 1159.35423 · doi:10.1016/j.na.2007.03.044
[6] Bartsch T, Dancer N, Peng S. On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv Diff Equ, 2006, 11: 781-812 · Zbl 1146.35081
[7] Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51: 266-284
[8] Benci V, Cerami G. Existence of positive solutions of the equation \(- \Delta u + a(x)u = u^{\tfrac{{N + 2}} {{N - 2}}}\) in ℝN. J Funct Anal, 1990, 88: 90-117 · Zbl 0705.35042 · doi:10.1016/0022-1236(90)90120-A
[9] Brezis H, Lieb E. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals. Proc Amer Math Soc, 1983, 88: 486-490 · Zbl 0526.46037 · doi:10.2307/2044999
[10] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Comm Pure Appl Math, 1983, 36: 437-477 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[11] Byeon J, Wang Z Q. Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc Var, 2003, 18: 207-219 · Zbl 1073.35199 · doi:10.1007/s00526-002-0191-8
[12] Cao D, Tang Z. Existance and uniqueness of multi-bump bounded states of nonlinear Schrödinger equations with electromagnetic fields. J Diff Equ, 2006, 222: 381-424 · Zbl 1357.35258 · doi:10.1016/j.jde.2005.06.027
[13] Cingolani S, Lazzo M. Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J Diff Equ, 2000, 160: 118-138 · Zbl 0952.35043 · doi:10.1006/jdeq.1999.3662
[14] Cingolani S, Secchi S. Semiclassical limit for nonlinear Schrödinger eaution with electromagnetic fields. J Math Anal Appl, 2002, 275: 108-130 · Zbl 1014.35087 · doi:10.1016/S0022-247X(02)00278-0
[15] Ding Y H, Tanaka K. Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math, 2003, 112: 109-135 · Zbl 1038.35114 · doi:10.1007/s00229-003-0397-x
[16] Esteban M, Lions P L. Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. Calc Var, 1989, 140: 369-408
[17] Gui C. Existance of muti-bump solutions for nonlinear Schrödinger equations via variational method. Comm Partial Diff Equ, 1996, 21: 787-820 · Zbl 0857.35116 · doi:10.1080/03605309608821208
[18] Kurata K. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal, 2000, 41: 763-778 · Zbl 0993.35081 · doi:10.1016/S0362-546X(98)00308-3
[19] Li G, Peng S, Wang C. Infinitely many solutions for nonlinear Schrödinger equation with electromagnetic fields. J Diff Equ, 2011, 251: 3500-3521 · Zbl 1229.35267 · doi:10.1016/j.jde.2011.08.038
[20] Liang S, Zhang J. Solutions of perturbed Schrödinger equation with electromagnetic fields and critical nonlinearity. Proc Edinb Math Soc, 2011, 54: 131-147 · Zbl 1208.35139 · doi:10.1017/S0013091509000492
[21] Tang Z. On the least energy solutions of nonlinear Schrödinger equations with electromagnetic fields. Comm Math Appl, 2007, 54: 627-637 · Zbl 1155.35459 · doi:10.1016/j.camwa.2006.12.031
[22] Tang Z. Multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields and critical frequency. J Diff Equ, 2008, 245: 2723-2748 · Zbl 1180.35237 · doi:10.1016/j.jde.2008.07.035
[23] Tang Z. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Comm Pure Appl Anal, 2014, 13: 237-248 · Zbl 1291.35366 · doi:10.3934/cpaa.2014.13.237
[24] Willem M. Minimax Theorems. Boston, MA: Birkhauser, 1996 · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.