×

A new monotonicity formula for the spatially homogeneous Landau equation with Coulomb potential and its applications. (English) Zbl 1541.35109

Summary: We describe a time-dependent functional involving the relative entropy and \(\dot{H}^1 \) the seminorm, which decreases along solutions to the spatially homogeneous Landau equation with Coulomb potential. The study of this monotone functional sheds light on the competition between dissipation and nonlinearity for this equation. It enables us to obtain new results concerning regularity/blowup issues for the Landau equation with Coulomb potential.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35K67 Singular parabolic equations
35R09 Integro-partial differential equations
45G05 Singular nonlinear integral equations
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
82D10 Statistical mechanics of plasmas

References:

[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier (2003) Zbl 1098.46001 MR 2424078 · Zbl 1098.46001
[2] Alexandre, R., Liao, J., Lin, C.: Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinet. Relat. Models 8, 617-650 (2015) Zbl 1320.35104 MR 3375485 · Zbl 1320.35104
[3] Arsen’ev, A. A., Peskov, N. V.: The existence of a generalized solution of Landau’s equation. Ž. Vyčisl. Mat. i Mat. Fiz. 17, 1063-1068, 1096 (1977) (in Russian) Zbl 0355.35074 MR 470442 · Zbl 0355.35074
[4] Carrapatoso, K., Desvillettes, L., He, L.: Estimates for the large time behavior of the Landau equation in the Coulomb case. Arch. Ration. Mech. Anal. 224, 381-420 (2017) Zbl 1390.35360 MR 3614751 · Zbl 1390.35360
[5] Carrapatoso, K., Mischler, S.: Landau equation for very soft and Coulomb potentials near Maxwellians. Ann. PDE 3, art. 1, 65 pp. (2017) Zbl 1404.35043 MR 3625186 · Zbl 1404.35043
[6] Chapman, S., Cowling, T. G.: The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press, Cambridge (1939) Zbl 0063.00782 MR 0001151 · Zbl 0063.00782
[7] Chern, J.-L., Gualdani, M.: Uniqueness of higher integrable solution to the Landau equation with Coulomb interactions. Math. Res. Lett., to appear · Zbl 1509.35174
[8] Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2, 299-318 (1967) Zbl 0157.25802 MR 219345 · Zbl 0157.25802
[9] Desvillettes, L.: Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal. 269, 1359-1403 (2015) Zbl 1325.35223 MR 3369941 · Zbl 1325.35223
[10] Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard poten-tials. I. Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25, 179-259 (2000) Zbl 0946.35109 MR 1737547 · Zbl 0946.35109
[11] Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard poten-tials. II. H -theorem and applications. Comm. Partial Differential Equations 25, 261-298 (2000) Zbl 0951.35130 MR 1737548 · Zbl 0951.35130
[12] Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245-316 (2005) Zbl 1162.82316 MR 2116276 · Zbl 1162.82316
[13] Desvillettes, L.: About Boltzmann’s H Theorem for the Landau equation (Autour du Théorème H de Boltzmann). Séminaire Laurent Schwartz -EDP et Applications (2019-2020), exp. IX, 13 pp. Zbl 1497.35332 · Zbl 1497.35332
[14] Fournier, N.: Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Comm. Math. Phys. 299, 765-782 (2010) Zbl 1198.35274 MR 2718931 · Zbl 1198.35274
[15] Golse, F., Gualdani, M. P., Imbert, C., Vasseur, A.: Partial regularity in time for the space homogeneous Landau equation with Coulomb potential. Ann. Sci. École Norm. Sup., to appear; arXiv:1906.02841
[16] Gualdani, M., Guillen, N.: On A p weights and the Landau equation. Calc. Var. Partial Differ-ential Equations 58, art. 17, 55 pp. (2019) Zbl 1404.35078 MR 3884792 · Zbl 1404.35078
[17] Gualdani, M. P., Guillen, N.: Estimates for radial solutions of the homogeneous Landau equa-tion with Coulomb potential. Anal. PDE 9, 1772-1809 (2016) Zbl 1378.35325 MR 3599518 · Zbl 1378.35325
[18] Guo, Y.: The Landau equation in a periodic box. Comm. Math. Phys. 231, 391-434 (2002) Zbl 1042.76053 MR 1946444 · Zbl 1042.76053
[19] He, L.: Well-posedness of spatially homogeneous Boltzmann equation with full-range inter-action. Comm. Math. Phys. 312, 447-476 (2012) Zbl 1253.35093 MR 2917172 · Zbl 1253.35093
[20] He, L.: Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing colli-sions limit. J. Statist. Phys. 155, 151-210 (2014) Zbl 1291.35162 MR 3180973 · Zbl 1291.35162
[21] He, L., Yang, X.: Well-posedness and asymptotics of grazing collisions limit of Boltzmann equation with Coulomb interaction. SIAM J. Math. Anal. 46, 4104-4165 (2014) Zbl 1315.35140 MR 3505177 · Zbl 1315.35140
[22] He, L.-B.: Sharp bounds for Boltzmann and Landau collision operators. Ann. Sci. École Norm. Sup. (4) 51, 1253-1341 (2018) Zbl 1428.35266 MR 3942041 · Zbl 1428.35266
[23] He, L.-B., Lu, X., Pulvirenti, M.: On semi-classical limit of spatially homogeneous quantum Boltzmann equation: weak convergence. Comm. Math. Phys. 386, 143-223 (2021) Zbl 1469.82028 MR 4287184 · Zbl 1469.82028
[24] Henderson, C., Snelson, S.: C 1 smoothing for weak solutions of the inhomogeneous Landau equation. Arch. Ration. Mech. Anal. 236, 113-143 (2020) Zbl 1435.35101 MR 4072211 · Zbl 1435.35101
[25] Henderson, C., Snelson, S., Tarfulea, A.: Local existence, lower mass bounds, and a new con-tinuation criterion for the Landau equation. J. Differential Equations 266, 1536-1577 (2019) Zbl 1406.35401 MR 3906224 · Zbl 1406.35401
[26] Krieger, J., Strain, R. M.: Global solutions to a non-local diffusion equation with quadratic non-linearity. Comm. Partial Differential Equations 37, 647-689 (2012) Zbl 1247.35087 MR 2901061 · Zbl 1247.35087
[27] Kullback, S.: A lower bound for discrimination information in terms of variation. IEEE Trans. Inform. Theory 4, 126-127 (1967)
[28] Lemarié-Rieusset, P. G.: Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Res. Notes in Math. 431, Chapman & Hall/CRC, Boca Raton, FL (2002) Zbl 1034.35093 MR 1938147 · Zbl 1034.35093
[29] Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193-248 (1934) Zbl 60.0726.05 MR 1555394 · JFM 60.0726.05
[30] Lifschitz, E. M., Pitaevskii, L. P.: Physical Kinetics. Pergamon Press., Oxford (1981)
[31] O’Neil, R.: Convolution operators and L.p; q/ spaces. Duke Math. J. 30, 129-142 (1963) Zbl 0178.47701 MR 146673 · Zbl 0178.47701
[32] Ożański, W. S., Pooley, B. C.: Leray’s fundamental work on the Navier-Stokes equations: a modern review of “Sur le mouvement d”un liquide visqueux emplissant l’espace”. In: Partial Differential Equations in Fluid Mechanics, London Math. Soc. Lecture Note Ser. 452, Cam-bridge Univ. Press, Cambridge, 113-203 (2018) Zbl 1408.35126 MR 3838050 · Zbl 1408.35126
[33] Silvestre, L.: Upper bounds for parabolic equations and the Landau equation. J. Differential Equations 262, 3034-3055 (2017) Zbl 1357.35066 MR 3582250 · Zbl 1357.35066
[34] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Ser. 32, Princeton Univ. Press, Princeton, NJ (1971) Zbl 0232.42007 MR 0304972 · Zbl 0232.42007
[35] Strain, R. M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187, 287-339 (2008) Zbl 1130.76069 MR 2366140 · Zbl 1130.76069
[36] Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilib-rium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203, 667-706 (1999) Zbl 0944.35066 MR 1700142 · Zbl 0944.35066
[37] Tsai, T.-P.: Lectures on Navier-Stokes Equations. Grad. Stud. Math. 192, Amer. Math. Soc., Providence, RI (2018) Zbl 1414.35001 MR 3822765 · Zbl 1414.35001
[38] Villani, C.: On the Cauchy problem for Landau equation: sequential stability, global existence. Adv. Differential Equations 1, 793-816 (1996) Zbl 0856.35020 MR 1392006 · Zbl 0856.35020
[39] Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273-307 (1998) Zbl 0912.45011 MR 1650006 · Zbl 0912.45011
[40] Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 71-305 (2002) Zbl 1170.82369 MR 1942465 · Zbl 1170.82369
[41] Wu, K.-C.: Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal. 266, 3134-3155 (2014) Zbl 1296.35112 MR 3158719 · Zbl 1296.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.